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MORPHOLOGICAL INFLECTION CONSEQUENCES OF THE DATA SAMPLING STRATEGY
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e Some featsNovel items are present in test regardless of sampling strategy, but OVERLAPAWARE yields

the most featsNovel and most consistent rate across languages and seeds

THREE OVERSIGHTS IN PRIOR WORK

e Performance is generally lowest on OVERLAPAWARE (due to the large number of featsNovel items)
1) UNIFORM SAMPLING creates an unnatural bias e Ranking of UNIFORM and WEIGHTED performance depends more on language than model or training size
towards “easier” low-frequency regular types. We e However, variability across seeds is highest for OVERLAPAWARE. This suggests that it matters which
propose naturalistic frequency WEIGHTED feature sets are in featsNovel vs featsAttested

sampling or controlled OVERLAPAWARE sampling
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FOURLICITTYPES OF OVERLAP

Since lemmas and feature sets can be combined, there TYPOLOGY AND GENERALIZATION

are four distinct types of licit test item. IS GENERALIZATION TO UNSEEN REASONABLE  Train | Language | Avg. Score
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RESULTS

e For all systems, generalization to unseen feature sets
proves challenging even for agglutinative languages
(Swabhili and Turkish) where this should be possible
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would prove more challenging than featsAttested.



