Input Sparsity and Derivational Relationships in Latin and Spanish

Jordan Kodner Stony Brook University

Productivity Workshop at DGfS 44, Feb 24, 2022

Outline

- Classical Latin Past Participles and Derivatives
- Spanish Past Participles and Derivatives
- Language Acquisition and Productivity
- Explaining the Spanish System with Diachrony

The situation in Latin

Classical Latin Principal Parts and Conjugations

- Traditionally classified into 4¹/₂ conjugations distinguished by 4 principal parts
- Conjugations correspond to theme vowels, principal parts to stems

Principal parts

- 1. present active indicative 1sg
- 2. present active infinitive
- 3. perfect active indicative 1sg
- 4. past participle (or supine)

Conj.	ThV	1st PP	2nd PP	3rd PP	4th PP	Meaning
		present stem		perfect	pptc	
1st	ā	amō	amāre	amāvī	amātus	'love'
2nd	ē	moneō	monēre	monuī	monitus	'warn'
3rd	е	legō	lēgere	lēgī	lēctus	'choose'
3rd <i>-iō</i>	i	capiō	capere	cēpī	captus	'take'
4th	ī	audiō	audīre	audīvī	audītus	'hear'

Complex Forms of the Past Participle

• Stems are not reliably derivable from one another

Pre	sent	Perfect	PPtc	Meaning
amō	amāre	amāvī	amātus	'love'
sonō	sonāre	sonuī	sonitus	'sound'
moneō	monēre	топиї	monitus	'warn'
maneō	manēre	mānsī	mānsus	'stay'
teneō	tenēre	tenuī	tentus	'hold'
audiō	audīre	audīvī	audītus	'hear'
pellō	pellere	pepulī	pulsus	'push'
capiō	capere	cēpī	captus	'take'
ferō	ferre	tulī	lātus	'carry'

Complex Forms of the Past Participle

• Stems are not reliably derivable from one another

Verbs with similar forms for one stem may not have similar forms for the others

Pre	sent	Perfect	PPtc	Meaning
amō	amāre	amāvī	amātus	'love'
sonō	sonāre	sonuī	sonitus	'sound'
moneō	monēre	топиї	monitus	'warn'
maneō	manēre	mānsī	mānsus	'stay'
teneō	tenēre	tenuī	tentus	'hold'
audiō	audīre	audīvī	audītus	'hear'
pellō	pellere	pepulī	pulsus	'push'
capiō	capere	cēpī	captus	'take'
ferō	ferre	tulī	lātus	'carry'
5 fc	orms	7 forms	7 forms	6

Data extracted from all the Old and Classical Latin from Perseus¹

- ~3.5 million tokens
- POS-tagged and lemmatized with modified CLTK²

Conjugation	# Verbs	Top freq		% Тор	Next most		% Top two
1st	541	-ātus	528	97.6%	-itus	6	98.7%
2nd	65	-itus	25	38.5%	-tus	17	64.6%
3rd	215	-tus	80	37.2%	-itus	19	46.6%
4th	55	-ītus	34	61.8%	-tus	13	87.3%

¹ Smith et al (2020), ² <u>http://cltk.org/</u>

Out of the most frequent verbs,

• 1st conjugation is largest and most homogeneous

Conjugation	# Verbs	Top fre	eq	% Тор	Next	nost	% Top two
1st	541	-ātus	528	97.6%	-itus	6	98.7%
2nd	65	-itus	25	38.5%	-tus	17	64.6%
3rd	215	-tus	80	37.2%	-itus	19	46.6%
4th	55	-ītus	34	61.8%	-tus	13	87.3%

Out of the most frequent verbs,

- 1st conjugation is largest and most homogeneous
- 3rd conjugation is second largest and most heterogeneous

Conjugation	# Verbs	Top fre	eq	% Тор	Next r	nost	% Top two
1st	541	-ātus	528	97.6%	-itus	6	98.7%
2nd	65	-itus	25	38.5%	-tus	17	64.6%
3rd	215	-tus	80	37.2%	-itus	19	46.6%
4th	55	-ītus	34	61.8%	-tus	13	87.3%

Out of the most frequent verbs,

- 1st conjugation is largest and most homogeneous
- 3rd conjugation is second largest and most heterogeneous
- *-itus* and *-tus* are the most common pptcs outside the 1st conjugation

Conjugation	# Verbs	Top fre	eq	% Тор	Next n	ıost	% Top two
1st	541	-ātus	528	97.6%	-itus	6	98.7%
2nd	65	-itus	25	38.5%	-tus	17	64.6%
3rd	215	-tus	80	37.2%	-itus	19	46.6%
4th	55	-ītus	34	61.8%	-tus	13	87.3%

Out of the most frequent verbs,

- 1st conjugation is largest and most homogeneous
- 3rd conjugation is second largest and most heterogeneous
- *-itus* and *-tus* are the most common pptcs outside the 1st conjugation

Conjugation	# Verbs	Top freq	% Тор	Next	most	% Top two
1st	541	<i>-ātus</i> 528	97.6%	-itus	6	98.7%
2nd	65	What co	unts a	S 5	17	64.6%
3rd	215	regular l	nere?	IS	19	46.6%
4th	55	-ītus 34	61.8%	-tus	13	87.3%

The Classical Latin *t*-Deverbals

- Deverbals with suffixes containing t (or s)
- A wide range of syntactic categories and meanings

Туре	Ending	Verb	Meaning	<i>t</i> -Deverbal	Meaning
Adverb	-tim	stō	'stand'	statim	'immediately'
Agent	-tor	doceō	'teach'	doc <mark>tor</mark>	'teacher'
Event	-tiō	agō	'do'	actiō	'action'
Event	-tus	sūmō	'spend'	sump <mark>tus</mark>	'expenditure'
Fut Ptc	-tūrus	morior	ʻdie'	mori <mark>tūrus</mark>	'about to die'
Result	-tūra	scribō	'write'	scrip tūra	'writing'

Derivation of the Classical *t***-Deverbals**

- *t*-Deverbals appear to be constructed from the pptc stem
- They adopt whatever irregularities exist in the pptc, including suppletion

Priscian Algorithm

- Begin with pptc
- Delete case/number ending
- Add *t*-deverbal ending
- Done!

	1st PP	2nd PP	3rd PP	4th PP	<i>t</i> -Deverbal
	amō	amāre	amāvī	amātu s	amātor
7	habeō	habēre	habuī	habitus	habitor
	agō	agere	ēgī	actus	actor
	pellō	pellere	pepulī	pulsus	pulsor
	sequor	sequī	secūtus est	-	secūtor
	ferō	ferre	tulī	<i>lātus</i>	lātor

Derivation of the Classical *t***-Deverbals**

- *t*-Deverbals appear to be constructed from the pptc stem
- They adopt whatever irregularities exist in the pptc, including suppletion

Exceptions are limited

- PPtc mortuus 'dead' FPtc moritūrus 'about to die'
- PPtc *sonituus* 'sounded' FPtc *sonātūrus* 'about to sound'
- PPtc *lautus* 'washed' Supine *lavātum*

The correspondence is productive with few exceptions

14

PPtc predicts t-deverbal and vice-versa

- PPtcs are far more common than any *t*-deverbal in the corpus
- In practice, inference pptc \rightarrow t-deverbal is much more common

Category	#Freq ≥ 35	%Total	#Unique	% of Category	% of Unique
PPtc	1006	75.9%	817	81.2%	89.6%
Adverb	18	1.4%	8	44.4%	0.9%
Agent	72	5.4%	20	27.7%	2.2%
Event	178	13.4%	54	30.3%	5.9%
FPtc	52	3.9%	13	25.0%	1.5%
Total	1326		912	68.8%	15

PPtc predicts *t*-deverbal and vice-versa

- PPtcs are far more common than any *t*-deverbal in the corpus
- In practice, inference pptc \rightarrow t-deverbal is much more common

How many *t*-devs are at least as frequent as the 1000th most freq pptc?

Category	#Freq ≥ 35	%Total	#Unique	% of Category	% of Unique
PPtc	1006	75.9%	817	81.2%	89.6%
Adverb	18	1.4%	8	44.4%	0.9%
Agent	72	5.4%	20	27.7%	2.2%
Event	178	13.4%	54	30.3%	5.9%
FPtc	52	3.9%	13	25.0%	1.5%
Total	1326		912	68.8%	16

PPtc predicts t-deverbal and vice-versa

- PPtcs are far more common than any *t*-deverbal in the corpus
- In practice, inference pptc → t-deverbal is much more common

How many *t*-devs are at least as frequent as the 1000th most freq pptc?

How many stems are attested only in a *t*-dev or only the pptc?

Category	#Freq ≥ 35	%Total	#Unique	% of Category	% of Unique
PPtc	1006	75.9%	817	81.2%	89.6%
Adverb	18	1.4%	8	44.4%	0.9%
Agent	72	5.4%	20	27.7%	2.2%
Event	178	13.4%	54	30.3%	5.9%
FPtc	52	3.9%	13	25.0%	1.5%
Total	1326		912	68.8%	17

The situation in Spanish

Spanish Past Participles

- Three conjugations (-*ar* < Lat. -*āre*, -*er* < Lat. -*ēre*, -*ir* < Lat. -*ere* and -*īre*)
- Past participles are highly regular but not exceptionless

Conj.	Present	Preter.	PPtc	Latin	Meaning
-ar	amar	amé	amado	< amāt-	'love'
-er	vencer	vencí	vencido	(<i>vict-</i>)	'defeat'
-ir	sentir	sentí	sentido	(sēns-)	'feel'
irreg	hacer	hice	hecho	< fāct-	'make'
irreg	ver	vi	visto	< (vīs-)	'see'
irreg	escribir	escribí	escrito	< script-	'write'

Spanish Past Participles

- Three conjugations (-*ar* < Lat. -*āre*, -*er* < Lat. -*ēre*, -*ir* < Lat. -*ere* and -*īre*)
- Past participles are highly regular but not exceptionless

		Conj.	Present	Preter.	PPtc	Latin	Meaning
Rewo Inherited on ba from Latin prese		-ar	amar	amé	amado	< amāt-	'love'
	Reworked on basis of	-er	vencer	vencí	vencido	(<i>vict-</i>)	'defeat'
	present \	-ir	sentir	sentí	sentido	(sēns-)	'feel'
	ſ	irreg	hacer	hice	hecho	< fāct-	'make'
		irreg	ver	vi	visto	< (vīs-)	'see'
	l	irreg	escribir	escribí	escrito	< script-	'write'

Spanish Past Participles

- Three conjugations (-*ar* < Lat. -*āre*, -*er* < Lat. -*ēre*, -*ir* < Lat. -*ere* and -*īre*)
- Past participles are highly regular but not exceptionless

Conjugation	# PPtcs	Reg. PPtc		% Reg
-ar	373	-ado	373	100%
-er	70	-ido	58	82.9%
-ir	94	-ido	81	86.2%

Spanish t-Deverbals

- t-Deverbal agent nouns and event nouns survive from Latin
- But note -ción is itself borrowed form Latin (doublet with inherited -zón)

Туре	Verb	<i>t</i> -Deverbal	Meaning	Latin <i>t</i> -Dev	Meaning
Agent	amar	amador	'lover'	amātor	'lover'
Agent	vencer	vencedor	'conqueror'	victor	'conqueror'
Agent	batir	batidor	'whisk'	(none)	'beat'
Event	quemar	quemazón	'burning'	cremātion-	'burning'
Event	comer	comezón	'itching'	comestion-	'eating'
Event	partir	partición	'partition'	partItion-	'distribution'

Spanish t-Deverbals

- *t*-Deverbals correspond to the present rather than pptc if different
- Irregular t-deverbals are usually borrowed from Latin

	Verb	PPtc	<i>t</i> -Deverbal	Latin PPtc	Meaning
Reworked	hacer	hecho	hacedor	fāct-	'maker'
present	abrir	abierto	abridor	apert-	'opener'
ſ	poner	puesto	posición	posit-	'position'
Borrowed	devolver	devuelto	devolución	-volūt-	'devolution'
from Latin	leer	leído	lección	lēct-	'lesson'
C	conducir	conducido	conductor	con-dūct-	'driver'

PPtc predicts t-deverbal and vice-versa

- PPtcs are more common than any *t*-deverbal in the corpus
- In practice, inference pptc \rightarrow t-deverbal is more common
- But this is far less skewed than Latin
- Many event nouns seem to be borrowed rather than synchronically derived

How many t-devs are at least as frequent as the 500th most freq pptc?

How many stems are attested only in a t-dev or only the pptc?

Category	#Freq ≥ 7	%Total	#Unique	% of Category	% of Unique
PPtc	540	54.7%	408	75.6%	61.0%
Agent	105	10.6%	52	49.5%	7.8%
Event	342	34.7%	209	61.1%	31.2%
Total	986		669	69.2%	24

PPtc predicts t-deverbal and vice-versa

- PPtcs are more common than any *t*-deverbal in the corpus
- In practice, inference pptc > t-deverbal is more common
- But this is far less skewed than Latin
- Many event nouns seem to be borrowed rather than synchronically derived

Category	#Freq	%Total	#Unique	% of Category	% of Unique
ES PPtc	540	54.7%	408	75.6%	61.0%
LA PPtc	1006	75.9%	817	81.2%	89.6%

Interim Summary

Classical Latin

- Complex relationship between pptc and other stems
- *t*-Devs correspond to pptcs regardless of pptc regularity
- PPtcs are much more frequent than all *t*-devs combined

Modern Spanish

- PPtcs almost always predictable from present stem
- *t*-Devs correspond with the present even if pptc is irregular
- PPtcs are more frequent than *t*-devs but not as skewed as Latin

Productivity, Learning, and Change

Leveraging Child Language Acquisition

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate"¹
 - How are patterns and exceptions learned?
 - How are developmental trajectories explained?

Leveraging Child Language Acquisition

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate"¹
 - How are patterns and exceptions learned?
 - How are developmental trajectories explained?

Broad agreement:

it isn't just token frequency (and derived measures)!²

→ Quantitative corpus analysis alone won't cut it

→ Should work through the implications of some concrete learning mechanism

¹ Rumelhart & McClelland 1986, Pinker & Prince 1988, Pinker 1994, Albright & Hayes 2006, Yang 2005, *and many more* ² Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016

The Tolerance Principle

- An evaluation metric¹ over linguistic hypotheses
- Is derived from
 - an Elsewhere Condition for 'rules' and 'exceptions'²
 - frequency-rank correlated lexical access³
 - Generally Zipfian input distributions
- Received psychological backing from artificial language learning experiments⁴

The Tolerance Principle

- An evaluation metric¹ over linguistic hypotheses
- Is derived from
 - an Elsewhere Condition for 'rules' and 'exceptions'²
 - frequency-rank correlated lexical access³
 - Generally Zipfian input distributions
- Received psychological backing from artificial language learning experiments⁴

Example Applications

- Is -s the default German noun pl? Under what conditions is -(e)n productive?
- Is vowel mutation as in *sing~sang* productive among similar verbs?

The Tolerance Principle¹

Given a hypothesized generalization *R* operating over a class *C*, quantitatively define the number of exceptions below which the generalization is tenable

The Tolerance Principle¹

Given a hypothesized generalization *R* operating over a class *C*, quantitatively define the number of exceptions below which the generalization is tenable

- N = number of types that should obey the generalization
- e = number of types that do not obey the generalization
- θ = max # of exceptions that can be tolerated

Exceptions are tolerable if

 $e < \theta$ $\theta = N / \ln N$

Visualization of the Tolerance Principle

N = types it should apply to e = types that are exceptions θ = tolerance threshold

e falls in the range [0,N] and may be less than or greater than θ

Visualization of the Tolerance Principle

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If e is below θ , acquire generalization

Visualization of the Tolerance Principle

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If *e* is below θ, acquire generalization Otherwise, do not generalize
Visualization of the Tolerance Principle

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If e is below θ, acquire generalization Otherwise, do not generalize

• N grows over an individual's development, θ grows more slowly

Visualization of the Tolerance Principle

- *N* grows over an individual's development, θ grows more slowly
- If θ grows faster than e, a generalization may fall into productivity

Visualization of the Tolerance Principle

- *N* grows over an individual's development, θ grows more slowly
- If θ grows faster than e, a generalization may fall into productivity
- If e grows faster than θ , a generalization may fall out of productivity

Child Lexical Knowledge

- Learners' vocabularies grow over the course of development
- There is significant individual variation, but consistent trends
- Only on the order of 10² for English and German learners by around age 3
- Children have the foundations for language-specific grammars by this point

A roughly 1 per million frequency cutoff applied to the larger CHILDES corpora yields lexicons like these¹

Language	Estimated Vocab
English 2;10-3;0 ²	525-1,116
German 2;6 ³	μ = 429, σ > 100

Applying the Tolerance Principle

Over likely generalizations

- Present stem > *t*-dev forms
- PPtc stem > *t*-dev forms

Theory independent interpretation

- Generalizations over surface phonotactics "rightmost vowel is /a:/"
- Or generalizations over morphemes

"ThV is -ā-"

Is stem+ $\bar{a}t$ - the productive t-dev for verbs with Theme V \bar{a} ?

Is stem+āt- the productive t-dev for verbs with Theme V ā?

A typical child who knows *n*=500 verbs knows

- *N*=221 *ā* verbs
- e=13 ā verbs with non -āt- t-devs

Is stem+āt- the productive t-dev for verbs with Theme V ā?

A typical child who knows *n*=500 verbs knows

- *N*=221 *ā* verbs
- e=13 ā verbs with non -āt- t-devs

 $\theta = N / \ln N$

Exceptions are tolerable if

Is stem+āt- the productive t-dev for verbs with Theme V ā?

A typical child who knows *n*=500 verbs knows

- *N*=221 *ā* verbs
- e=13 ā verbs with non -āt- t-devs
- θ=40.94 tolerance threshold

Exceptions are tolerable if

-āt- is productive for ā verbs at n=500

Summary results for Past Participles¹

If derivations are only possible from the present,

- Productive pptc derivation for 1st (-ātus), 3rd-iō (-tus)
- Marginal for faveo-type (-autus/-otus) and solvo-type (-utus)
- No productive pptc derivation for 2nd, 3rd-*ō*, 4th
- No broadly productive -*itus* or -tus

If derivations is possible from the perfect,

- The above + productive deriv for -*īvī* (most of 4th; -*ītus*), -*ēvī* (-*ētus*), -*Csī* (-*tus*)
- Solidly productive *-ūtus* for *solvō*-types
- No broadly productive pptc derivation for *-uī*-perfect verbs
- Still no broadly productive -*itus* or -tus

¹Kodner (to appear)

The Past Participle ~ *t*-Deverbal Correspondence

Diachrony - It's mostly an accident

- The pptc and *t*-devs are etymologically related < PIE nominalizer *-*to*-
- Same sound changes → same forms, eg *vīsus* ~ *vīsiō* < **wid-t-os*, **wid-t-iō-n-*
- But not all forms are the result of sound change, eg offerō ~ oblātus ~ oblātio

The Past Participle ~ *t*-Deverbal Correspondence

Diachrony - It's mostly an accident

- The pptc and *t*-devs are etymologically related < PIE nominalizer *-*to*-
- Same sound changes → same forms, eg vīsus ~ vīsiō < *wid-t-os, *wid-t-iō-n-

Learning - Learning maintains the correspondence

- The form of most *t*-devs needs to be inferred sparsity problem
- Most attested *t*-devs also have a corresponding attested pptc
- "Make the *t*-dev be like the pptc" works better than other hypotheses

Learning t-Deverbal Forms

Possible surface generalizations

- 1. Base the *t*-deverbals on the present or perfect
- 2. Base the *t*-deverbals on the pptc
- 3. Base the pptc on the *t*-dev

Methodology

- Test the generalizations on the Perseus corpus
- Using the Tolerance Principle

1. Base the *t*-Dev on the Present or Perfect

Works for a few classes, especially $-\overline{a}$ - and $-\overline{i}$ - stems

- Correspondence holds trivially for -ā- and -ī- stems t-dev/pptc is thematic -āt- and -īt-
- Actually a majority of verbs!

But it doesn't work overall

• Too many exceptions for a learner to acquire

1. Base the *t*-Dev on the Present or Perfect

Works for a few classes, especially -ā- and -ī-stems But it doesn't work overall Theme Vowel PPtc Example At n=10

• Too many exceptions for a learner to acquire

Blue-Green	Productive		
Red	Unproductive		
Gold	within 1		
White	Not evaluated		

Theme Vowel	PPtc	Example	At <i>n</i> =100?	At 500?	At 1,000?	
ā (1st)	-ātus	vocāre ~ vocāt-	N=17(e=1)	221 (11)	541 (14)	
<i>ē</i> (2nd)	-ĭtus	habēre ~ habit-	16 (9)	55 (35)	65 (40)	
<i>ē</i> (2nd)	-tus	docēre ~ doct-	16 (14)	55 (42)	65 (48)	
e (3rd non <i>-iō</i>)	-ĭtus	reddere~reddit-	47 (46)	147 (136)	201(185)	
e (3rd non <i>-iō</i>)	-tus	scribere ~ script-	47 (32)	147 (105	201(143)	
<i>i</i> (3rd - <i>iō</i>)	-tus	capiō ~ captus	9 (1)	12 (2)	14 (3)	
ī (4th)	-ītus	audīre ~ audīt-	5 (3)	27 (9)	55 (21)	
ī (4th)	-tus	venīre ~ vent-	5 (2)	27 (20)	55 (42)	
Individual Development						

2. Base the *t*-Dev on the Past Participle

The correspondence overwhelmingly holds

- There are very few exceptions
- These tend to be high frequency \rightarrow can be memorized

Some exceptions¹

- mortuus 'dead' but moritūrus 'about to die'
- sonitus 'sounded' but sonātūrus 'about to sound'

3. Base the Past Participle on the *t*-Dev

In practice, inference has to go pptc \rightarrow *t*-deverbal

- PPtcs are far more common than any *t*-deverbal in the corpus
- In practice, inference pptc \rightarrow *t*-deverbal is much more common

3. Base the Past Participle on the *t*-Dev

In practice, inference has to go pptc \rightarrow *t*-deverbal

- PPtcs are far more common than any *t*-deverbal in the corpus
- In practice, inference pptc \rightarrow *t*-deverbal is much more common

How many *t*-devs are at least as frequent as the 1000th most freq pptc?

How many stems are attested only in a *t*-dev or only the pptc?

Category	#Freq ≥ 35	%Total	#Unique	% of Category	% of Unique
PPtc	1006	75.9%	817	81.2%	89.6%
Adverb	18	1.4%	8	44.4%	0.9%
Agent	72	5.4%	20	27.7%	2.2%
Event	178	13.4%	54	30.3%	5.9%
FPtc	52	3.9%	13	25.0%	1.5%
Total	1326		912	68.8%	54

Correspondences in Spanish

PPtcs productively and transparently built on the present

- Much simpler than Latin
- Very few exceptions
- Conflation of *-er* and *-ir*

Conjugation	PPtc	Example	At <i>n</i> =500?
-ar	-ado	amar ~ amado	373 (0)
-er	-ido	saber ~ sabido	70 (12)
-ir	-ido	seguir ~ seguido	94 (13)

Agents almost always correspond with their pptcs

- But also agree with the present
- Agents -er shows -e- theme vowel -edor
- Agree with present over PPtc (eg hacer, hecho, hacedor)

Interim Summary

Classical Latin

- Complex relationship between pptc and other stems
- *t*-Devs correspond to pptcs regardless of pptc regularity
- PPtcs are much more frequent than all *t*-devs combined

Modern Spanish

- PPtcs almost always predictable from present stem
- *t*-Devs correspond with the present even if pptc is irregular
- PPtcs are more frequent than *t*-devs but less extreme than Latin
- → PPtc→t-dev inference less important
- → Ambiguous base for *t*-deverbal

Interim Summary

Classical Latin

- Complex relationship between pptc and other stems
- *t*-Devs correspond to pptcs regardless of pptc regularity
- PPtcs are much more frequent than all *t*-devs combined

Modern Spanish

- PPtcs almost always predictable from present stem
- *t*-Devs correspond with the present even if pptc is irregular
- PPtcs are more frequent than *t*-devs but less extreme than Latin
- → PPtc→t-dev inference less important
- → Ambiguous base for t-deverbal

How did the system realign from Latin to Spanish?

By type count, many Latin t-deverbals had an ambiguous base as well

Remember how some Latin *t*-devs == pptcs == present stems?

- 1st conjugation is overwhelmingly regular Pres $-\bar{a}$ PPtc $-\bar{a}t$ -t-Dev $-\bar{a}t$ -
- Majority of 4th conj is too Pres -*ī* ~ PPtc -*ī*t- ~ *t*-Dev -*ī*t-
- These support alternative Present ~ *t*-Dev analysis

Remember how some Latin *t*-devs == pptcs == present stems?

- 1st conjugation is overwhelmingly regular Pres $-\bar{a}$ ~ PPtc $-\bar{a}t$ ~ t-Dev $-\bar{a}t$ -
- Majority of 4th conj is too Pres -*ī* ~ PPtc -*ī*t- ~ *t*-Dev -*ī*t-
- These support alternative Present ~ *t*-Dev analysis

The 1st and 4th conjugations grew in Late Latin

• Tendency to coin new intensive, iterative, etc, verbs in -*tāre*, -*titāre*, etc¹ Inflect as "regular" first conjugation verbs *-*atu* verbs build on present stems Replaced "irregular" 3rd conjugation verbs (eg *cantō*, *cantātus* replacing *canō*, *cantus*)²

Remember how some Latin *t*-devs == pptcs == present stems?

- 1st conjugation is overwhelmingly regular Pres $-\bar{a}$ ~ PPtc $-\bar{a}t$ ~ t-Dev $-\bar{a}t$ -
- Majority of 4th conj is too Pres -*ī* ~ PPtc -*ī*t- ~ *t*-Dev -*ī*t-
- These support alternative Present ~ *t*-Dev analysis

The 1st and 4th conjugations grew in Late Latin

- Tendency to coin new intensive, iterative, etc, verbs in *-tāre*, *-titāre*, etc¹ Inflect as "regular" first conjugation verbs **-atu* verbs build on present stems Replaced "irregular" 3rd conjugation verbs (eg *cantō*, *cantātus* replacing *canō*, *cantus*)²
- Distinction between 2nd, 3rd, and 4th conjugation collapsed variably into two categories -er < *-ere < -ēre and -ir < *-ire < -īre³ These got "regular" pptcs build on present stems

Remember how some Latin *t***-devs == pptcs == present stems?**

- 1st conjugation is overwhelmingly regular Pres $-\bar{a}$ ~ PPtc $-\bar{a}t$ ~ t-Dev $-\bar{a}t$ -
- Majority of 4th conj is too Pres -*ī* ~ PPtc -*ī*t- ~ *t*-Dev -*ī*t-
- These support alternative Present ~ *t*-Dev analysis

The 1st and 4th conjugations grew in Late Latin

- Tendency to coin new intensive, iterative, etc, verbs in *-tāre*, *-titāre*, etc¹ Inflect as "regular" first conjugation verbs **-atu* verbs build on present stems Replaced "irregular" 3rd conjugation verbs (eg *cantō*, *cantātus* replacing *canō*, *cantus*)²
- Distinction between 2nd, 3rd, and 4th conjugation collapsed variably into two categories -er < *-ere < -ēre and -ir < *-ire < -īre³ These got "regular" pptcs build on present stems
- Spanish irregular pptcs are overwhelmingly high frequency and mostly inherited⁴ what we expect from analogical leveling

Conclusions

Productivity in the *t***-deverbals over time**

- Derived from the past participle in Latin but present in Spanish
- Most Latin *t*-devs must be inferred form pptc
 But Spanish *t*-devs are more likely to be attested w/o the verb's pptc
- Change in the past participles over time
 Largely unpredictable in Latin → Highly regular in Spanish
- Modeling with the Tolerance Principle is consistent with this finding

The End Thank you

- **1.** All children receive unique input yet exhibit gross developmental uniformity¹
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items²
- 3. Token frequencies correlate with relative order of acquisition³
- 4. Early learner vocabularies are small⁴

- 1. All children receive unique input yet exhibit gross developmental uniformity¹
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items²
- 3. Token frequencies correlate with relative order of acquisition³
- 4. Early learner vocabularies are small⁴

- **1.** All children receive unique input yet exhibit gross developmental uniformity¹
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items²
- 3. Token frequencies correlate with relative order of acquisition³
- 4. Early learner vocabularies are small⁴

- **1.** All children receive unique input yet exhibit gross developmental uniformity¹
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items²
- 3. Token frequencies correlate with relative order of acquisition³
- 4. Early learner vocabularies are small⁴

- 1. All children receive unique input yet exhibit gross developmental uniformity¹
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items²
- 3. Token frequencies correlate with relative order of acquisition³
- 4. Early learner vocabularies are small⁴

As a result,

- Applying a frequency cutoff to lemmas in CDS approximates a "typical" child
- Insight taken by type frequency-based models of acquisition⁵

Acquisition in the Past

- Children in the past must have acquired language in the same way that modern children do this is straightforward uniformitarianism¹
- We can reason about acquisition in the past in the same way we do now

Can non-CDS be substituted for CDS to study the relevant problem?

Acquisition in the Past

- Children in the past must have acquired language in the same way that modern children do this is straightforward uniformitarianism¹
- We can reason about acquisition in the past in the same way we do now

Can non-CDS be substituted for CDS to study the relevant problem? Yes, for the purposes of lexical acquisition²

Data Set

Perseus Corpus

- Scraped all Old and Classical Latin texts from website HTML
 - 3rd BC AD 2nd inclusive
 - ~3.5mil tokens
- More than available by download undocumented "feature" :-\

Largest plain text OL/CL corpus?

Data Set

Perseus Corpus

- Scraped all Old and Classical Latin texts from website HTML
 - 3rd BC AD 2nd inclusive
 - ~3.5mil tokens
- More than available by download

Post-Processing

- POS-tagged and lemmatized with modified CLTK library
 - **1,292 unique verb lemmas when derivational prefixes removed**
- Scraped Latin Wiktionary verbs to match lemmas to principal parts
Data Set

Perseus Corpus

- Scraped all Old and Classical Latin texts from website HTML
 - 3rd BC AD 2nd inclusive
 - ~3.5mil tokens
- More than available by download

Post-Processing

- POS-tagged and lemmatized with modified CLTK library
 - **1,292** unique verb lemmas when derivational prefixes removed
- Scraped Latin Wiktionary verbs to match lemmas to principal parts
- Manually compared ~100 principal parts to Oxford Latin Dictionary

Latin Wiktionary is surprisingly accurate!

Productive Present \rightarrow **PPtc by Theme Vowel**

Theme Vowel	PPtc	Example	At <i>n</i> =100?	At 500?	At 1,000?
ā (1st)	-ātus	vocāre ~ vocātus	YES	YES	YES
ē (2nd)	-ĭtus	habēre ~ habitus	no	no	no
ē (2nd)	-tus	docēre ~ doctus	no	no	no
e (3rd non <i>-iō</i>)	-ĭtus	reddere ~ redditus	no	no	no
e (3rd non <i>-iō</i>)	-tus	scribere ~ scriptus	no	no	no
i (3rd - <i>iō</i>)	-tus	capiō ~ captus	YES	YES	YES
e or <i>i</i> (all 3rd)	-ĭtus	II ~ II	no	no	no
e or <i>i</i> (all 3rd)	-tus	II ~ II	no	no	no
ī (4th)	-ītus	audīre ~ audītus	YES	marginal [*]	no
ī (4th)	-tus	venīre ~ ventus	YES	no	no

Individual Development

Productive Present → PPtc more Narrowly

Present	PPtc	Example	At <i>n</i> =100?	At 500?	At 1,000?
-[a, o]veō	-[au, ō]tus	faveō ~ fautus	-	YES	YES
-[Velar] <i>eō</i>	-tus	doceō ~ doctus	-	no	no
-[not Velar]eō	-itus	debeō ~ debitus	marginal*	no	no
-[not Velar]eō	-tus	teneō ~ tentus	no	no	no
-vere	-ūtus	solvere ~ solūtus	YES	marginal*	marginal*
-[<i>ll, rr</i>]ere	-[l,r]sus	currō ~ cursus	-	marginal*	no
other 3rd	-ĭtus	reddere ~ redditus	no	no	no
other 3rd	-tus	scribere ~ scriptus	no	no	no

Individual Development

Productive Perfect → PPtc

Perfect	PPtc	Example	At <i>n</i> =100?	At 500?	At 1,000?
-āv-	-ātus	amāvī ~ amātus	YES	YES	YES
-īv-	-ītus	dormīvī ~ dormītus	YES	YES	YES
-ēv-	-ētus	flēvī ~ flētus	YES	YES	marginal*
-u-	-ĭtus	valuī ~ valitus	no	no	no
-u-	-tus	tenuī ~ tentus	no	no	no
-[Velar] <i>u-</i>	-tus	līquī ~ līctus	-	no	no
-[not Velar] <i>u-</i>	-ĭtus	dēbuī ~ dēbitus	no	no	no
-[not Velar] <i>u-</i>	-tus	peruī ~ pertus	no	no	no
-S-	-tus	scripsī ~ scriptus	no	no	no
-Cs-	-tus	iūnxī ~ iūnctus	YES	YES	YES
bare or stem change	-ĭtus	lēgī ~ lēctus	no	no	no

Individual Development

Productive Perfect + Present → PPtc

Perfect	PPtc	Example	At <i>n</i> =100?	At 500?	At 1,000?
-vere + -u-	-ūtus	volvere ~ voluī ~ volūtus	YES	YES	YES
			Individ	ual Develop	ment

- Only makes a difference for once class, but it is *-*utu*
- Only an option when a learner happens to know both stems

The System from Latin to Proto-Romance

Varied across the Latin-speaking world, but in general...

- Novel verbs tended to have regular pptcs¹
- "Regular" *-*atu*, *-*itu*, *-*utu* < -*ātus*, -*ītus* (not -*ĭtus*), -*ūtus* expanded at the expense of -*itus*, -*tus*, and others²
- The rise of *-*utu* is mysterious given that it is rare in CL
- Perfects (\Rightarrow preterites) were often regularized, often in *-*ui* < -*uī*³

Reflexes of *-ūtus* **and** *-ĭtus* **in Attested Romance**¹

- Reflexives of -*ūtus* constitute the default for at least some class in most Romance languages
 - They are present but apparently non-productive in Surselvan (Rhaeto-Romance; Switzerland)
- Reflexes are attested in Old Spanish and Portuguese but have been lost
 - Their only reflexes are in adjectives eg, *agudo*, *menudo*
- -*itus* remains productive in Apulian and Sardinian
 - /i/ merged with /i:/ in
 Sardinian, causing -*ĭtus* to fall together with -*ītus*

Diachronic Implications

Developments in Late Latin

- Three productive LL pptcs: *-*atu* < -*ātus*, *-*itu* < -*ītus*, *-*utu* < -*ūtus*
- *-itus* and *-tus* were unproductive in CL and reduced to irregulars
- -ūtus was productive for a small class
- But the only productive option for *-uī* perfects!
- It spread first among *-uī* perfects
- No competition, "a big fish in a small pond"

Implications

Listing and Rules

- An externally motivated model guides theoretical analysis
- Predicts much more listing than a linguist relying on intuitions might

The relationship between stems

- If pptcs are derived from perfects
 - More can be derived by rule
 - Accounts for diachronic leveling of the perfect and pptc
- To do so, either perfect stems exist as representational objects or multiple step root → perfect "stem" → pptc derivations are required

How are past particples derived?

- Are regular pptcs influenced by the present or perfect, or all memorized?
- Diachronic evidence for both

present → pptc:	nasal infix spread
perfect → pptc:	perfect analogies

The Nasal Infix

- Inherited from PIE, inserted into present stems
- Some continue to work like this in Latin¹
- But some have analogized to the perfect and pptc
- Only evidence for present → pptc derivation if absent in the perfect
 - At most two examples of this...
 - Otherwise, can present → perfect → pptc

Туре	Present	Perfect	PPtc
Inherited	fu <mark>n</mark> dō	fūdī	fūsus
Pres, Perf	fingō	fī <mark>n</mark> xī	fictus ²
All	iu <mark>n</mark> gō	iu <mark>n</mark> xī	iūnctus
Dros DDtc	pungō	pupugī	pūnctus
FIES, PPIC	tundō	tutudī	tū(n)sus

Perfect Analogies

- Some pptcs have clearly been reworked on the basis of the perfect¹
 - cernōcrēvīcrētus(expected certus retained as adj)sternōstrāvīstrātus
 - ? sonāre sonuī sonitus
- Continues into Late Latin: eg *-*utu* pptcs typically correspond to *-*ui* perfects

The System from Proto-Romance to Romance

Spanish, for example, shows the most regularization¹

- Regularization continued
 - -ado, -ido, and -udo existed in Old Spanish
 - Only -*ado*, -*ido* remain productive
- A handful of irregular pptcs remain, many relegated to adjectival meaning
 - *hecho, puesto, suelto, visto, vuelto, etc, not all inherited*
 - *teñir~teñido* 'dyed' but adj *tinto* 'dyed red' < *tinctus*, etc
 - OS had more eg querer~quisto, prender~preso < prehensus

Past Participle Gaps and Meanings

- Past participles are typically passive
- But not all verbs have past participles¹
 - Sometimes due to semantics (eg, statives have no pptcs)
 - Sometimes they're more properly paradigmatic gaps

eg bibō, but pōtus not *bibitus, feriō, but percussus not *ferītus

- Some pptcs are active rather than passive²
 - Expected for deponents
 - But applies to some non-deponents as well

eg locūtus (deponent) 'having spoken,' iūrātus 'having sworn'

Cross-Language Lexical Comparisons

- Compared lexical composition of modern CDS and historical corpora
- Calculated number of verb types across corpora with similar meanings

For corpus-derived lexicons A and B where A and B are unordered sets, $similarity = |A \cap B| / min(|A|, |B|)$

Cross-Language Corpora

- English CDS verb lemmas in CHILDES Brown (and Brent for comparison)
- Spanish CDS verb lemmas in combined CHILDES FernAguado, Hess, OreaPine, Remedi, Romero, SerraSole
- Classical Latin verb lemmas in all Perseus online 3rd BC 2nd AD (inclusive)

Corpus	Freq Cutoff	Lexicon size (<i>n</i>)
English CDS Brown	< 17	260
English CDS Brent	< 17	257
Spanish CDS	< 11	263
Latin	< 666	260

Cross-Language Comparisons

- Baselines: English-English (within-language) English-Spanish (cross-language)
- English-English unsurprisingly has the highest overlap
- Latin comparisons fall in between English-Spanish and English-English

Latin Perseus contains the same kind of high frequency verbs that CDS does

Comparison	% Overlap
English - EN Brent	81.71%
English - Spanish	73.07%
English - Latin	75.77%
Spanish - Latin	78.62%

Paradigm Saturation

- Paradigm Saturation¹ the proportion of a verb's possible inflected forms which are actually attested in a corpus
- A measure of data sparsity
- Mean saturations tend to be low
- Obeys Zipfian distribution

Paradigm Saturation Data

- All POS-tagged, lemmatized, morpho feature annotated
- CDS English (Brown), Spanish
- and German (CDS Leo¹)
- Modern UD² English, Finnish, German, Spanish, Turkish
- Historical UD Gothic, Latin
- Order 10⁵ verb tokens
- CDS token/type ratios are on the order of 10x higher

Corpus	Lang	# V Tokens	# V Types	Ratio
CDS	English	94,768	916	103.46
CDS	Spanish	96,686	879	110.00
CDS	German	81,351	641	126.91
Modern	English	53,796	3,225	16.67
Modern	Spanish	85,861	5,019	17.11
Modern	German	21,835	2,826	7.73
Modern	Finnish	63,891	3,476	18.38
Modern	Turkish	12,064	968	12.46
Historic	Gothic	12,749	1,172	10.88
Historic	Latin	99,066	2,2833	34.97

Paradigm Saturations

- CDS saturations only slightly higher than modern equivs
- Despite difference in token/type ratios
- Historical corpora similar to modern ones
- Saturation appears related to paradigm size if anything

Corpus	Lang	Paradigm	Max Sat.	Mean Sat.	Med Sat.
CDS	English	5	100%	43.23%	40.00%
CDS	Spanish	29	44.83%	7.59%	6.90%
CDS	German	67	52.24%	8.31%	4.48%
Modern	English	5	100%	42.80%	40.00%
Modern	Spanish	67	43.28%	4.91%	1.49%
Modern	German	29	51.72%	5.83%	3.45%
Modern	Finnish	150	27.33%	2.46%	1.33%
Modern	Turkish	120	99.17%	4.83%	1.67%
Historic	Gothic	52	53.85%	6.31%	3.85%
Historic	Latin	113	81.42%	5.90%	2.65%

CDS and UD distributions correspond by language

Zipfian Distributions

Zipfian Distributions

Historical distributions look like modern ones

Language Change by Language Acquisition

- Child language acquisition is one of the primary drivers of language change¹
- Not a new idea (Schleicher 1861, Paul 1880, etc)
- Children are both innovators and propagators of change
- Minor learning "errors" over successive generations → major population-level change

The Paradox of Language Change

- Term coined by Niyogi & Berwick 1997
- As I see it, a central problem in the study of language change

If children are so good at language acquisition, why are they so bad at it?

Transmission is not strictly linear and generational

- Children mature in communities and receive input from multiple speakers
- Young children learn sociolinguistic variables¹
- Children attend to input from older children² who are not linguistically mature
- Not inconsistent with the adolescent peak³ of many continuous changes

Some learning targets are unclear or absent

- One cannot acquire language from input alone due to Poverty of the Stimulus
- UG is proposed to render learning possible in the face of the PoS¹
- But many language specific patterns must still be acquired from the input²

Input is both richer and poorer than typically acknowledged

- Evidenced by the successes and failures of modern NLP³
- Zipfian and other long-tailed distributions for all manner of linguistic features
 - Most lexical items appear only once even in massive corpora
 - Zipfian distributions mean sparsity is consistently worse than our intuitions about sparsity

Abject Poverty

Occasionally the PoS is so great that UG cannot ensure that all learners converge on the same grammar

- Forms in even moderately complex paradigms may never appear in the input¹
- Paradigmatic gaps occur when learners fail to learn a generalization for unattested input²
- Some syntactic 'parameters' cannot be set consistently³

Moving Targets

Variation is a normal and unavoidable part of acquisition

- Even in "monolingual" environments¹
- Children learn from multiple adults and each other

Change is formally inevitable²

- Given categorical representations³ and "trivial" variation
- The population composition must change over time

What causes innovation?

"Errors" presuppose a target. Innovations need not be due to "errors"

Errors - "Blame the Child"

- The learner does not act correctly on its input "a buggy algorithm"
- > errors presuppose appropriate evidence and an available target

Non-errors - "Blame the Environment"

- The learner acts correctly but is dealt a bad input sample
- Even for a good algorithm, "garbage in, garbage out"
- Change in the face of even trivial variation

The Sibling Effect

• Why might children not overcome their overgeneralizations?

Imagine big sister Alice and little brother Bob

- Alice is currently producing innovative *ē pasts in Class IV
 - Plausible given how Class IV *ē is tenable late
 - Bob may hear these forms
- Bob is receiving both adult conservative IV pasts and Alice's
- How does this effect Bob?

The Sibling Effect

Can Bob identify Alice's innovation?

- Bob is likely not hear adult-produced tokens for any given low frequency Class IV verb until much later
- Since Alice is mostly consistent with adults, he cannot tell if she is innovating

Will Bob adopt Alice's innovation?

- Even young children orient toward peers
- Bob may prefer Alice's forms over his parents
- He may later learn adult forms as sociolinguistic variant doublets