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Generation
Ravi and Knight (2009), Irvine et al. (2010)

Sl O\ > brussels

Generate transliteration
In a open-ended way.
(a transduction task)

Discovery
Sproat et al. (2006), Klementiev and Roth (2008)
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Select transliteration for a word
from a (long) list of names.

(a ranking task)

[ Our Work: Generation in low-resource settings. J

\\{Idea: Discovery Is a easier task. Use it to aid Generation.y
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* A seq2seq generation model, tailored for transliteration.
* A bootstrapping algorithm, that uses constrained discovery
to improve a weak generation model.
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Monotonic (latent) Alignments
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Transliteration as Monotonic Seq2Seq Generation

Inference using Hard Monotonic Attention
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Bidirectional RNN Encoder

Encoding the Input

Training

Inference Strategies

& unconstrained strategy.
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* The encoder encodes the character embeddings of the input
characters using a bidirectional RNN.

Decoding with Hard Monotonic Attention

 The decoder generates a sequence of actions, where each action
is either a character from the output alphabet, or a step action.

« At any time, the decoder RNN is attending on a single input
character’s hidden vector to generate output character(s).

* The step action increments the attention position by one.

* The stepping mechanism ensures that the decoding is monotonic.

* Inspired by Aharoni (2017)’s approach for morphological inflection.

The oracle sequence of actions is generated from name pairs
using Algorithm 1 from Aharoni (2017), and the latent character-level
alignments are derived using the algorithm from Cotterell (2016).

* Unconstrained (U) — pick the most likely transliteration from beam.
* Dictionary Constrained (DC) — pick the most likely transliteration
from beam that appears in a name dictionary, else default to
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/ Bootstrapping with Constrained Discovery \

[ Small Training Set
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/ Discovery
| K-Best Predictions
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Generation Model

... tomaz, tomas, thomas ...
... landan, london, londun, ...
... interpole, interpoll, inturpol, ...

5
U

Constraints

 Minimum length of exact match - False positives in early iterations
were usually short transliterations.

* The length ratio of output string and input string should be
close to ratio estimated from training data.

Convergence
{eep bootstrapping until accuracy@1 stops increasing on dev set./
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After every iteration, purge the set of mined name pairs to prevent
new model to be affected by (bad) pairs mined in earlier iterations.
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Full Supervision Experiment

 Models Compared

1. Pasternack (2009) — probabilistic transliteration approach that uses
alignment b/w substrings in both source and target names.

2. DirecTL+ (2009) - HMM-like discriminative string transduction model.

3. Lin (2016) — A transliteration approach based on the joint source-channel
model, that uses many-2-many alignments b/w source and target.

4. Lin (2016) + EL - re-rank transliterations lang-indep. entity linking.

5. Ours(U & DC) - unconstrained and dict. constrained version of our model.

- Evaluation Dataset: NEWS 2015
« Each language has ~10k (or more) name pairs for supervision.

Full Supervision Setting (~10k training examples)
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Pasternack
(2009)

DirecTL+ Lin (2016) Ours (U)

Hindi

(2009)

Unconstrained Inference

Kannada ™Hebrew ®Tamil *-Average

35.6

<

43.2

Lin (2016) + EL  Ours (DC)

Constrained Inference

Hard Monotonic Attention Model is better than SoTA.
Simple dictionary constrained inference, does much better
than the expensive SoTA + Entity Linking approach
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Inherent Challenges of Transliteration
4 N
Source Driven Errors
Tamil: {ta, da, tha, dha} -2 {5}
Hindi: {ta, da, tha, dha} - {d, <, ¥, Y}
Acc@1 | Hindi as Src Hindi as Trg
Tamil 31% 15%
- /
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Target Driven Errors
Irregular Spelling
[Phliladel[ph]ia, So[ph]ia, [F]rance
[K]lansas, [Clardiff, [Q]Juinn, Bro[ck]

‘Inconsistency with Devoicing
(Mensene[B], Medvede|v]), (MsaHo[B], Ivano[v])
(CmupHo[B], Smirno[ff]), (PaxmannHo[B], Rachmaninolff])

Silent Letters
L Marsei[lle], Versal[lles], Bruxell[es] y
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Native vs Foreign Names

Transliterating Wickramsinghe vs Brussels from Tamil.

Acc@1 on Native and Foreign Names
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63.1 ® Native ®Foreign
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40 231 243
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Manual Annotation Exercise

 Languages: Punjabi and Armenian.

« Two subtasks for each annotator.

« Task 1: Two annotations per letter
(“[J]ulia”, “Ben[j]amin”)

« Task 2: Transliterate list of English words.

Lang. Punjabi Armenian
Time (hours) 3 4
Pairs ~500 ~600
Ours (U) 33.4 49.9
Ours(U) + Boot. 445 55.8
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supervision.
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Low Resource Experiment
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Only 500 name pairs available in each language as supervision.
* Train a weak generation model and bootstrap using a name dict.

After
6 iterations of
bootstrapping

Starting with only 500 examples, bootstrapping achieves
competitive performance to full supervision.

Manual annotation is practical and effective!
Enough supervision to bootstrap a model.
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Extrinsic Evaluation

Task: Candidate Generation (CG) for

cross-lingual entity linking.

Example: A mention of “Chicago” in Amharic

is first transliterated from f.h%, and then

candidate entities are generated.

A7 NP LN fh emmIA.
(Chicago will play at Woodstock.)

Languages: Macedonian and Tigrinya
Evaluation Metric: if the gold entity for the query
is in the top-20 candidates (Recall@?20).
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