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Modeling Population-Level Change
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Why Simulate Change?

● We have lots of data on historical change and change in progress - evidence
● We have logically derived theories of change - evidence
● But we cannot test large scale language change in the lab - missing evidence

It would be nice to test cause an effect directly. 

Simulation provides that outlet.

A useful tool in computational biology, epidemiology, computational social 
sciences, etc.
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● Individual agents on a grid moving randomly and interacting
● e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & 

Kenny 2013
+ Gradient interaction probability for free
+ Diffusion is straightforward
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- Thousands of degrees of freedom -> should run many many times -> slow
- Unclear how to include a learning model
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1. Concrete Frameworks
2. Network Frameworks

● Speakers are nodes in a graph, edges are possibility of interaction
● e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et 

al. 2010, Minett & Wang 2008, Kauhanen 2016
+ Much more control over network structure
+ Easy to model concepts from the sociolinguistic lit. (e.g., Milroy & Milroy)

- Nodes only interact with immediate neighbors -> slow and less realistic?
- Practically implemented as random interactions between neighbors -> 

same problem as #1
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Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks
3. Algebraic Frameworks

● Expected outcome of interactions in a perfectly mixed population is 
calculated analytically

● Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi & 
Berwick 1997, Niyogi & Berwick 2009

+ Less reliance on random processes -> faster and more direct
+ Clear how to insert learning models into the framework
- No network structure! Always implemented over perfectly mixed 

populations



Our Framework
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Best of Both Worlds

● An algebraic model operating on network graphs
○ No random process in the core algorithm
○ Fast and efficient
○ Models language change in social structures



Vocabulary for this Talk

Different research traditions, Different vocabularies

L: That which is transmitted
Language ≈ Variety ≈ *Lect ≈ E-Language

G: That which generates/describes/distinguishes L
That which is learned/influenced by L
Grammar ≈ Variant ≈ I-Language



The Model

Language change is a two step loop
1. Propagation: calculate how grammars spread
2. Acquisition: calculate how grammars are learned



The Model

Language change is a two step loop
1. Propagation: calculate how grammars spread
2. Acquisition: calculate how grammars are learned

If this were a linear chain,
L0→ G1→ L1→ G2→ L2→ … → Ln→ Gn+1→ … 



The Model

Language change is a two step loop
1. Propagation: calculate how grammars spread
2. Acquisition: calculate how grammars are learned

If this were a linear chain,
L0→ G1→ L1→ G2→ L2→ … → Ln→ Gn+1→ … 

Our model alternates applying a propagation function and an 
acquisition function



Formal Description

[ REDACTED ]



Propagation

Network Structure

● Nodes
○ How many people are there? (n)
○ How are people clustered? Socially or geographically?
○ Do people migrate?



Propagation

Network Structure

● Nodes
○ How many people are there? (n)
○ How are people clustered? Socially or geographically?
○ Do people migrate?

● Edges 
○ Are interactions bidirectional? 
○ Are interactions equal? By likelihood, frequency, or social valuation?
○ Can the mode of interaction change over time? 



Propagation

Network Structure

● Nodes
○ How many people are there? (n)
○ How are people clustered? Socially or geographically?
○ Do people migrate?

● Edges 
○ Are interactions bidirectional? 
○ Are interactions equal? By likelihood, frequency, or social valuation?
○ Can the mode of interaction change over time? 

● Replacement
○ Are we modeling large scale (generations) or small scale (older/younger siblings) change? 
○ Do people die a lot? Does the network grow or shrink?
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Propagation

Calculation

● Every person/node has a probably unique Gi
● And produces a sample of Li

We want to know what mix of L someone 
standing at node i receives as input

Simplifying the calculation,
Someone at node 1 hears 6-parts L2, 1-part L3, and 5-parts L4 
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Acquisition

● How does each learner react to her unique mix of L?
● Dependent on the learning model
● Many learning models can be slotted in

○ trigger-based learner (Gibson & Wexler 1994)
○ Variational learner (Yang 2000)
○ Anything that operates on probabilities...



Population Size and Grammars
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Background

● Simulations typically run with a few hundred agents
○ Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.

● Is this true of actual speech communities?
○ Maybe sometimes!
○ But not typically true of the communities under study

● Martha’s Vineyard (Labov 1963)
○ ~5,500 in winter → ~42,000 in summer c. 1960
○ Summer population largely from New England (cf Massachusetts 5.1mil in 1960)

● Do-Support (Ellegård 1953)
○ Rise of do-support constructions in English 1400-1700
○ Involved millions of individuals
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● If learners internalize a distribution of grammars (e.g. competing grammars) 
and the population is (approximately) uniformly mixed, it is not a problem

○ Change closely approximates the path followed in infinite populations
○ So small-population models are a useful convenience



When is this a Problem?

● If learners internalize a distribution of grammars (e.g. competing grammars) 
and the population is (approximately) uniformly mixed, it is not a problem

○ Change closely approximates the path followed in infinite populations
○ So small-population models are a useful convenience

● But, if either of the above does not hold, it is a problem (maybe)
○ It becomes impossible to untangle population and learning effects
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Demonstration: Neutral Change

● Assume two connected communities
○ C1 begins with 100% Grammar 1
○ C2 begins with 100% Grammar 2

● Neutral change
● Over time, each community should

          approach 50/50 mix
● Assume speakers internalize a single grammar

○ Chosen probabilistically from mix of L
○ weighted by frequency in their input
○ cf Kauhanen 2016

Rise of G2 in C1
n = 200

Red curve predicted
Blue curves first 10 trials
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n = 200 n = 2,000 n = 20,000

Most trials fix 
at 0% or 100%

Most trials 
hover near
50%



Demonstration: Advantage

● Repeating the previous test but with an advantage
○ Single community beginning at 1% innovative grammar
○ Learners choose a single grammar probabilistically, weighted toward innovative
○ Logistic curve predicted

n = 200 n = 2,000 n = 20,000
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● At small n, S-curve change cannot arise 
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Demonstration: Advantage

● At small n, S-curve change cannot arise
● At large n, S-curves become smooth 

n = 200 n = 2,000 n = 20,000

Looks a lot 
like neutral 
change did!



Conclusions 

● “Innocuous” assumptions may dominate behavior
○ Here, choice of population size and single-grammar assumptions
○ Conclusions drawable for n=200 do not scale to n=20,000 or visa-versa

● Slightly different assumptions yield drastically different conclusions
○ Is neutral change well-behaved? 
○ Do we expect to see S-curve change?

● Most innovation is meaningless
○ If innovation occurs in a corner of some (small) sub-community, it will probably die off fast



Complex Networks and S-Curves:
The Cot-Caught Merger in New England
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Single-Grammar Learners

● The previous section pointed out a problem with single-grammar learners
● But it is not an indictment
● Some changes are neatly modeled as single-grammar processes

○ Can represent the loss of distinctions in the grammar
○ E.g., the spread of mergers, e.g., cot-caught on the RI/MA border (Johnson 2007)
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Modeling the loss of Distinction

● Claim: Mergers tend to spread 
because the merged grammar 
has a processing advantage

● When two speakers with the 
distinction (D+) talk, no 
misunderstanding

● A distinctionless (D-) speaker 
misunderstands D+ or D- if s/he 
misreads the discourse

● When D+ hears D-, D+ 
misunderstands when D- uses 
variant A but means B

● Is it better to be D+ or D-?
● Depends on how many D- are 

around
● For a cot-caught variational 

learner, D- is better if at least 
17% of the input is D-



The Problem

● A variational learner in a near-uniform population fixes at 0% or 100% 
immediately

● Because the % of distinctionless speakers ≈ % distinctionless input
● If < 17% are distinctionless, nobody will learn it
● If > 17% are distinctionless, everybody will learn it
● Not what has happened empirically
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The Solution

● A more realistic network!
● Large populations are not 

homogeneous
○ Tend to consist of many tight 

clusters loosely connected together
○ Echos of Milroy & Milroy’s “strong 

and weak connections”
○ Homophily
○ Physical geography
○ etc.

● So we consider a loosely 
connected network of 
centralized clusters
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The Solution

● A network of 39 loosely 
connected centralized clusters - 
all unmerged

● Plus one merged cluster
● Clusters merges rapidly in 

succession
● But the community average is an 

S-curve
Clusters
Average
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Properties of Change

The averaged S-curve slope 
● depends on the grammatical 

advantage and the network
● is improved by evolving the 

network
● is preserved when introduced 

with a time offset
○ Is compatible with the 

Constant Rate Effect

4 0 Offset
10 Offset
20 Offset
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Conclusions  

Population models and learning models interact

● They conspire to yield empirical rates of change
● S-curve change is possible outside competing grammars scenarios
● Population effects preserve CRE across simultaneous changes with the same 

advantage
● We have a solution looking for a problem



Questions?
Code Available Here:

github.com/jkodner05/NetworksAndLangChange 

Slides Available Here:

ling.upenn.edu/~jkodner

https://github.com/jkodner05/NetworksAndLangChange


Extra slides: Maths
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● A n x n adjacency matrix
● α jump parameter
● H n x c community-membership
● B c x g distr. of grammars in 

comms
● P c x g distr. of grammars in inputs

The network graph

Who speaks what in what proportion
Who hears what in what proportion



Diffusion

● A n x n adjacency matrix
● α jump parameter
● H n x c community-membership
● B c x g distr. of grammars in 

comms
● P c x g distr. of grammars in inputs

● Indicates directed weighted edges 
between speakers in network

● Column stochastic
● Easy to make undirected or 

unweighted



Diffusion

● A n x n adjacency matrix
● α jump parameter
● H n x c community-membership
● B c x g distr. of grammars in 

comms
● P c x g distr. of grammars in inputs

● Decides “fluidity” of interactions
● Jump distances follow a geometric 

distribution
○ Speakers are most likely to interact with 

adjacent speakers
○ But occasionally talk to others far away

● Also implemented with Poisson 
distribution
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● More on this later...
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Diffusion

● A n x n adjacency matrix
● α jump parameter
● H n x c community-membership
● B c x g distr. of grammars in 

comms
● P c x g distr. of grammars in inputs

● Distribution of grammars
● Heard by learners of each 

community



Tracking Individuals

● The model can the average behavior of “communities” rather than individuals
● If c = n, then H is n x n, and the full descriptive detail of the model is available

○ H becomes the identity matrix, and the formula for P can be rewritten



Tracking Communities

● If fine-grain detail is unnecessary, tracking community averages provides 
substantial computational speedup when c << n

● If each community is internally uniform, n x n A admits a c x c 
equitable-partition Aπ

● Yielding a more efficient but equivalent update formula for P

Anecdotally, I can run n = 20,000 nets on my laptop with Aπ about as fast as n = 2,000 net with A 
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Transmission

● Dependent on the learning model
● Our implementation is modular, so many learning models can be slotted in

○ e.g.,  trigger-based learner (Gibson & Wexler 1994)
○ Variational learner (Yang 2000)

● Let L be the distribution of grammars internalized by a learner who heard P
○ L is a matrix consisting of g vectors l1, l2, … lg

● Define g transition matrices T1, T2, … Tg, one for each potential target 
grammar



Transmission and Grammatical Advantage

● If L = P, learners internalize variants at the rate they hear 
them
○ This yields neutral change

● Otherwise, learners choose variants in a way that biases 
some over others
○ Some variants have an advantage over others
○ This yields S-curve change in perfectly mixed populations
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● Let there be two languages L1 and L2, the extensions of g1 and g2, produced 
with probabilities P1 and P2.

● a = P1[L1 union L2] 1 - a = P1[L1\L2]
● b = P2[L1 union L2] 1 - b = P2[L2\L1]



Transmission Example

● Let there be two languages L1 and L2, the extensions of g1 and g2, produced 
with probabilities P1 and P2.

● a = P1[L1 union L2] 1 - a = P1[L1\L2]
● b = P2[L1 union L2] 1 - b = P2[L2\L1]
● Let T1 and T2 be transition matrices assuming g1 and g2 are the target 

grammars respectively
● T1 = [1 0   ; 1-a a] T2 = [b 1-b   ;  0 1]
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Transmission Example

T1 =�1 0�  
    �1-a a�

T2 =�b 1-b�  
    �0   1�

● If the target grammar is g1, 
then in the limit...

○ Learners who initially hypothesize 
g1 will always remain in g1

○ Learners who initially hypothesize 
g2 will remain at g2 with 
probability a

○ Or switch to g1 with probability 
1-a



Extra Slides: 
NCS in the St. Louis Corridor



Not all Change is Ideal

● An empirical fact
● Some change does not reach completion
● So it is obviously not S-shaped 



● Dialect region within US 
Midlands between Chicago and 
St. Louis

● But has features from the Inland 
North

○ Northern Cities Shift (NCS)
○ Has advanced and retreated

ANAE 2006

The St. Louis Corridor



● NCS entered the Corridor via 
Route 66 during the Great 
Depression

Friedman 2014
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● NCS entered the Corridor via 
Route 66 during the Great 
Depression

● Path of change is different 
On-Route and Off-Route

○ NCS peaks first On-Route
○ NCS peaks higher On-Route

● Typical of two-compartment 
systems

Wikipedia

The St. Louis Corridor

“On-Route”
“Off-Route”
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● Midlands (1; “background”)
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● On-Route (19)
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Modelling the Corridor: Network Structure

Community Types:
● Midlands (1; “background”)
● Chicago (1)
● On-Route (19)
● Off-Route (19)

Connections:
● Midlands to all On-Route  and Off-Route
● Chicago to all On-Route
● On-Route to two adjacent On-Route
● On-Route to one adjacent Off-Route
● Off-Route to one adjacent Off-Route

7
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● Vary a single parameter: Direction of movement to On-Route communities
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Modelling the Corridor: History

● Vary a single parameter: Direction of movement to On-Route communities
● Tests Great Depression hypothesis
● It would be too “easy” if we could vary multiple parameters

○ Movement Off-Route
○ Strength of connections between On-Route and Off-Route
○ Strength of connections between On/Off-Route and Chicago/Midlands
○ Advantage of NCS
○ Etc.

● And the results would be less meaningful



Modelling the Corridor: History

● Vary a single parameter: Direction of movement to On-Route communities
● Tests Great Depression hypothesis

Stage 1 - 5 iterations
No movement (speaker interaction only)

Stage 2 - 20 iterations
2% movement from Chicago to On-Route “Great Depression”

Stage 3 - 75 iterations
2% movement from Midlands to On-Route “Post-Depression”
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Modelling the Corridor: The Variable

● Treating the NCS as a single binary variable subject to competing grammars
● Community Variable Distributions:

○ Chicago fixed at 100% NCS+
○ Midlands fixed at 100% NCS-
○ On/Off-Route begins 100% NCS- but is allowed to vary

● Tested as neutral, slightly advantaged, and heavily advantaged change
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Results: Neutral Change

● A classic two-compartment 
pattern arises

● NCS peaks higher and earlier 
On-Route than Off-Route

● NCS continues to increase 
Off-Route even after On-Route 
population movements are 
reversed

- - - - End Depression
On-Route Avg

On-Route Comms.
Off-Route Avg

Off-Route Comms.
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● Advantaged change resists being 
“tamped down” Off-Route

○ NCS recedes given a slight advantage
○ NCS advances given a heavy 

advantage

● Exists some threshold above 
which indirect action On-Route is 
insufficient

● Can be solved with additional 
model parameters

○ Rate of movement Off-Route
○ The advantage itself
○ etc.

Results: Advantaged Change
Slight Advantage

a=0.80, b=0.82

Heavy Advantage
a=0.80, b=0.85
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Final Takeaways

Population models and learning models interact!

● Assumptions must be carefully considered when modelling change
○ Under what assumptions are results generalizable?

● Attested paths of change are governed by these interactions
○ Sometimes explicitly e.g., the St. Louis Corridor
○ Sometimes implicitly e.g., New England cot-caught


