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Outline

Frameworks for Population-Level Change

Description of our Framework

Population Size and Assumptions about the Grammar
Realistic Networks and the Path of Change



Modeling Population-Level Change
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Why Simulate Change?

e We have lots of data on historical change and change in progress - evidence
e We have logically derived theories of change - evidence
e But we cannot test large scale language change in the lab - missing evidence

It would be nice to test cause an effect directly.
Simulation provides that outlet.

A useful tool in computational biology, epidemiology, computational social
sciences, etc.
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1. Concrete Frameworks

e Individual agents on a grid moving randomly and interacting

e e.g.,Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford &
Kenny 2013

+ Gradient interaction probability for free

+ Diffusion is straightforward

- Not a lot of control over the network

- Thousands of degrees of freedom -> should run many many times -> slow

- Unclear how to include a learning model
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Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks

Speakers are nodes in a graph, edges are possibility of interaction

e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et
al. 2010, Minett & Wang 2008, Kauhanen 2016

Much more control over network structure

Easy to model concepts from the sociolinguistic lit. (e.g., Milroy & Milroy)

Nodes only interact with immediate neighbors -> slow and less realistic?
Practically implemented as random interactions between neighbors ->
same problem as #1
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Three Classes of Framework

1. Concrete Frameworks
2. Network Frameworks
3. Algebraic Frameworks

Expected outcome of interactions in a perfectly mixed population s
calculated analytically

Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi &
Berwick 1997, Niyogi & Berwick 2009

Less reliance on random processes -> faster and more direct

Clear how to insert learning models into the framework

No network structure! Always implemented over perfectly mixed
populations



Our Framework
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Best of Both Worlds

e Analgebraic model operating on network graphs
o Norandom process in the core algorithm
o Fast and efficient
o Models language change in social structures



Vocabulary for this Talk
Different research traditions, Different vocabularies

L: That which is transmitted

Language = Variety = *Lect = E-Language

G: That which generates/describes/distinguishes L

That which is learned/influenced by L
Grammar = Variant = I-Language
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The Model

Language change is a two step loop
1. Propagation: calculate how grammars spread
2. Acquisition: calculate how grammars are learned

If this were a linear chain,
L>G~>L~>G~>L>...>L>G_  ~>..

Our model alternates applying a propagation function and an
acquisition function



Formal Description

| REDACTED |}
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Propagation
Network Structure

e Nodes
o How many people are there? (n)
o How are people clustered? Socially or geographically?
o Do people migrate?

e Edges
o Areinteractions bidirectional?
o Areinteractions equal? By likelihood, frequency, or social valuation?
o Canthe mode of interaction change over time?

e Replacement
o Are we modeling large scale (generations) or small scale (older/younger siblings) change?
o Do people die a lot? Does the network grow or shrink?
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Propagation

Calculation

e Every person/node has a probably unique Gi
e And produces asample of Li

We want to know what mix of L someone
standing at node i receives as input

Simplifying the calculation,
Someone at node 1 hears 6-parts L2, 1-part L3, and 5-parts L4
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Acquisition

e How does each learner react to her unique mix of L?
e Dependent on the learning model

e Many learning models can be slotted in

o trigger-based learner (Gibson & Wexler 1994)
o Variational learner (Yang 2000)
o Anything that operates on probabilities...



Population Size and Grammars
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e Is this true of actual speech communities?
o Maybe sometimes!

Anuta
island

Just one-sixth of a square mile in area.
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Background

e Simulations typically run with a few hundred agents
o Kauhanen 2016, Stanford & Kenny 2013, Blythe & Croft 2012, etc.

e s this true of actual speech communities?

o Maybe sometimes!

o  Butnot typically true of the communities under study
e Martha’s Vineyard (Labov 1963)

o ~5,500in winter > ~42,000 in summer c. 1960

o  Summer population largely from New England (cf Massachusetts 5.1mil in 1960)
e Do-Support (Ellegard 1953)

o Rise of do-support constructions in English 1400-1700
o Involved millions of individuals



When is this a Problem?

e Iflearnersinternalize a distribution of grammars (e.g. competing grammars)

and the population is (approximately) uniformly mixed, it is not a problem

o Change closely approximates the path followed in infinite populations
o So small-population models are a useful convenience



When is this a Problem?

e Iflearnersinternalize a distribution of grammars (e.g. competing grammars)

and the population is (approximately) uniformly mixed, it is not a problem

o Change closely approximates the path followed in infinite populations
o So small-population models are a useful convenience

e But, if either of the above does not hold, it is a problem (maybe)
o Itbecomesimpossible to untangle population and learning effects
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e Assume two connected communities
o C1begins with 100% Grammar 1
o C2begins with 100% Grammar 2
e Neutral change
e Over time, each community should
approach 50/50 mix

e Assume speakers internalize a single grammar
o Chosen probabilistically from mix of L
o weighted by frequency in their input
o cf Kauhanen 2016



Demonstration: Neutral Change

Rise of G2 in C1
e Assume two connected communities n =200
o C1begins with 100% Grammar 1
o C2begins with 100% Grammar 2
e Neutral change
e Over time, each community should
approach 50/50 mix

e Assume speakers internalize a single grammar
o Chosen probabilistically from mix of L
o weighted by frequency in their input
o cfKauhanen 2016 Red curve predicted
Blue curves first 10 trials

300 400 500
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Demonstration: Advantage

e Repeating the previous test but with an advantage
o Single community beginning at 1% innovative grammar
o Learners choose a single grammar probabilistically, weighted toward innovative
o Logistic curve predicted

1000 1000



Demonstration: Advantage
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Demonstration: Advantage
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e Atsmalln, S-curve change cannot arise
e Atlargen, S-curves become smooth

Looks a lot |
like neutral |
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Conclusions

e “Innocuous” assumptions may dominate behavior
o Here, choice of population size and single-grammar assumptions
o Conclusions drawable for n=200 do not scale to n=20,000 or visa-versa
e Slightly different assumptions yield drastically different conclusions
o Is neutral change well-behaved?
o Do we expect to see S-curve change?
e Mostinnovation is meaningless
o Ifinnovation occurs in a corner of some (small) sub-community, it will probably die off fast



Complex Networks and S-Curves:
The Cot-Caught Merger in New England
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Single-Grammar Learners

e The previous section pointed out a problem with single-grammar learners
e Butitisnotanindictment

e Some changes are neatly modeled as single-grammar processes

o Canrepresent the loss of distinctions in the grammar
o E.g.,the spread of mergers, e.g., cot-caught on the RI/MA border (Johnson 2007)
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Modeling the loss of Distinction

Claim: Mergers tend to spread
because the merged grammar
has a processing advantage
When two speakers with the
distinction (D+) talk, no
misunderstanding

A distinctionless (D-) speaker
misunderstands D+ or D- if s/he
misreads the discourse

When D+ hears D-, D+
misunderstands when D- uses
variant A but means B

Is it better to be D+ or D-?
Depends on how many D- are
around

For a cot-caught variational
learner, D- is better if at least
17% of the input is D-



The Problem

e Avariational learner in a near-uniform population fixes at 0% or 100%
immediately

Because the % of distinctionless speakers = % distinctionless input

If <17% are distinctionless, nobody will learn it

If > 17% are distinctionless, everybody will learn it

Not what has happened empirically
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e A more realistic network!
e Large populations are not

homogeneous
o Tend to consist of many tight
clusters loosely connected together
o Echos of Milroy & Milroy’s “strong
and weak connections”

Linked[[l]. Mops

Matthew Rees's Professional Network
as of April 14, 2011
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The Solution

e A more realistic network!
e Large populations are not
homogeneous

O

O

@)

(@)

Tend to consist of many tight
clusters loosely connected together
Echos of Milroy & Milroy’s “strong
and weak connections”

Homophily

Physical geography

etc.

e So we consider a loosely
connected network of
centralized clusters

Linked[[l]. Mops

Matthew Rees's Professional Network
as of April 14, 2011
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The Solution

A network of 39 loosely

[
connected centralized clusters -
allunmerged

e Plus one merged cluster
e Clusters merges rapidly in
succession
e Butthe community average is an

S-curve
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Properties of Change

The averaged S-curve slope:

depends on the grammatical
advantage and the network
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Properties of Change

The averaged S-curve slope

depends on the grammatical
advantage and the network
is improved by evolving the
network
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Properties of Change

The averaged S-curve slope
e depends on the grammatical
advantage and the network
e isimproved by evolving the
network
e ispreserved when introduced
with a time offset
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Properties of Change

The averaged S-curve slope

e depends on the grammatical
advantage and the network

e isimproved by evolving the
network

e is preserved when introduced
with a time offset

o |Is compatible with the
Constant Rate Effect
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e They conspire to yield empirical rates of change

e S-curve change is possible outside competing grammars scenarios

o Evenin small populations
o Therefore gradual change alone cannot be evidence for competing grammars
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Conclusions

Population models and learning models interact

e They conspire to yield empirical rates of change

e S-curve change is possible outside competing grammars scenarios

e Population effects preserve CRE across simultaneous changes with the same
advantage

e We have a solution looking for a problem



Questions?

Code Available Here:

github.com/jkodner05/NetworksAndLangChange

Slides Available Here:
ling.upenn.edu/~jkodner



https://github.com/jkodner05/NetworksAndLangChange

Extra slides: Maths
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Diffusion

P =B al—(1—-a)A) '"HHH)!

e A nxnadjacency matrix The network graph
B cxgdistr. of grammars in Who speaks what in what proportion
comms Who hears what in what proportion

P ¢ xgdistr. of grammars in inputs



Diffusion

P =B'a(I—(1—c)A) 'HH H)"!

e A nxnadjacency matrix e Indicates directed weighted edges
between speakers in network
e Column stochastic
e Easy to make undirected or
unweighted



Diffusion

Poi=B a(I-(1-c)A) 'HHH)!

e Decides “fluidity” of interactions
e a jump parameter e Jump distances follow a geometric

distribution
o Speakers are most likely to inter
adjacent speakers
o But occasionally talk to others far away

e Also implemented with Poisson
distribution



Diffusion

P =B al—(1—-a)A) '"HHH)!

e Indicator matrix
e Defines “community” membership
e H nxccommunity-membership e More on this later...



Diffusion

P =B al—(1—-a)A) '"HHH)!

e Distribution of grammars
e According to which community
members produce utterances
e B cxgdistr. of grammarsin
comms



Diffusion

P =B al—(1—-a)A) '"HHH)!

e Distribution of grammars
e Heard by learners of each
community

e P cxgdistr. of grammars in inputs



Tracking Individuals

e The model can the average behavior of “communities” rather than individuals

e Ifc=n,thenHisnxn,and the full descriptive detail of the model is available
o Hbecomes the identity matrix, and the formula for P can be rewritten

Poi=B o(I—(1-a)A)"!



Tracking Communities

e If fine-grain detail is unnecessary, tracking community averages provides

substantial computational speedup when c<<n
e If each community is internally uniform,nxnAadmitsacxc

equitable-partition A"
e Yielding a more efficient but equivalent update formula for P

A" = (H'H) 'H'AH
P, —oB H(I-(1-a)A™) ' (H'H)!

Anecdotally, | can run n = 20,000 nets on my laptop with A™ about as fast as n = 2,000 net with A
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e Ourimplementation is modular, so many learning models can be slotted in
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o Variational learner (Yang 2000)



Transmission

e Dependent on the learning model

e Ourimplementation is modular, so many learning models can be slotted in

o e.g., trigger-based learner (Gibson & Wexler 1994)
o Variational learner (Yang 2000)

e LetL bethe distribution of grammars internalized by a learner who heard P
o Lisamatrix consisting of gvectors | , L, ... Ig

e Define g transition matrices T , T ,... Tg, one for each potential target
grammar

g
l; = dominant eigenvector of Z Pir1.7T;
j=1



Transmission and Grammatical Advantage

e IfL =P, learnersinternalize variants at the rate they hear
them
o Thisyields neutral change
e Otherwise, learners choose variants in a way that biases

some over others

o Some variants have an advantage over others
o Thisyields S-curve change in perfectly mixed populations



Transmission Example

e Letthere betwo languagesL and L, the extensions of g . and g , produced
with probabilities P. and P..

e a=P[L unionlL] 1-a=P[L\L]

e b=P[L unionlL] 1-b=P,[L\L ]



Transmission Example

e Letthere betwo languagesL and L, the extensions of g . and g , produced
with probabilities P. and P..

e a=P[L unionlL] 1-a=P[L\L]

e b=P[L unionlL] 1-b=P,[L\L ]

e LetT andT, betransition matrices assuming g and g, are the target
grammars respectively

° T1=[1 0 ; 1-a a] T2=[b 1-b ; 0 1]
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Transmission Example

Tl

=11 O[]
[11-a

al |

If the target grammaris gl,

then in the limit...

o Learners who initially hypothesize
gl will always remainin gl

o Learners who initially hypothesize
g2 will remain at g2 with
probability a

o  Orswitch to g1 with probability
1-a



Extra Slides:
NCS in the St. Louis Corridor




Not all Change is Ideal

e An empirical fact
e Some change does not reach completion
e Soitisobviously not S-shaped



The St. Louis Corridor

e Dialect region within US
Midlands between Chicago and
St. Louis

e But has features from the Inland

North
o Northern Cities Shift (NCS)
o Has advanced and retreated

)

ANAE 2006



The St. Louis Corridor

NCS entered the Corridor via
Route 66 during the Great
Depression
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NCS entered the Corridor via
Route 66 during the Great
Depression

Path of change is different

On-Route and Off-Route
o  NCS peaks first On-Route
o NCS peaks higher On-Route

The St. Louis Corridor
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The St. Louis Corridor

NCS entered the Corridor via On-Route Off-Route
Route 66 during the Great 1o I S S R R
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The St. Louis Corridor

e NCS entered the Corridor via
Route 66 during the Great
Depression

e Path of change is different

On-Route and Off-Route

o NCS peaks first On-Route
o NCS peaks higher On-Route

e Typical of two-compartment
systems

Cuantity of Tracer

“On-Route”
“Off-Route”

Time

Wikipedia



Modelling the Corridor: Network Structure

Community Types:
e Midlands (1; “background”)
e Chicago (1)
e On-Route (19)
e Off-Route (19)




Modelling the Corridor: Network Structure

Community Types:
e Midlands (1; “background”)
e Chicago (1)
e On-Route (19)
e Off-Route (19)

Connections:

e Midlands to all On-Route and Off-Route
Chicago to all On-Route
On-Route to two adjacent On-Route
On-Route to one adjacent Off-Route
Off-Route to one adjacent Off-Route




Modelling the Corridor: History

e Vary asingle parameter: Direction of movement to On-Route communities
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Modelling the Corridor: History

e Vary asingle parameter: Direction of movement to On-Route communities
e Tests Great Depression hypothesis

e Itwould betoo “easy” if we could vary multiple parameters
Movement Off-Route

Strength of connections between On-Route and Off-Route

Strength of connections between On/Off-Route and Chicago/Midlands
Advantage of NCS

Etc.

e And the results would be less meaningful

o O O O O



Modelling the Corridor: History

e Vary asingle parameter: Direction of movement to On-Route communities
e Tests Great Depression hypothesis

Stage 1-5iterations
No movement (speaker interaction only)

Stage 2 - 20 iterations
2% movement from Chicago to On-Route “Great Depression”

Stage 3 - 75 iterations
2% movement from Midlands to On-Route “Post-Depression”



Modelling the Corridor: The Variable

e Treating the NCS as a single binary variable subject to competing grammars
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e Community Variable Distributions:
o Chicago fixed at 100% NCS+
o Midlands fixed at 100% NCS-
o On/Off-Route begins 100% NCS- but is allowed to vary



Modelling the Corridor: The Variable

e Treating the NCS as a single binary variable subject to competing grammars

e Community Variable Distributions:
o Chicago fixed at 100% NCS+
o Midlands fixed at 100% NCS-
o On/Off-Route begins 100% NCS- but is allowed to vary

e Tested as neutral, slightly advantaged, and heavily advantaged change
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Results: Neutral Change

100

Percent NCS+

e Aclassic two-compartment ----End Deplression

pattern arises ol On-Route Avg |

. . On-Route Comms.

e NCS peaks higher and earlier Off-Route Avg
On-Route than Off-Route 60 |

e NCS continues to increase
Off-Route even after On-Route
population movements are
reversed
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Results: Advantaged Change -
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Slight Advantage
a=0.80, b=0.82

Results: Advantaged Change

60 -

e Advantaged change resists being
“tamped down” Off-Route

o NCSrecedes given a slight advantage
o NCS advances given a heavy

40 +

20+
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which indirect action On-Route is Heavy Advantage
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T F"ercent NCS-?-

Slight Advantage

Results: Advantaged Change °© |  a-0s0,b=082

e Advantaged change resists being I
“tamped down” Off-Route

o NCSrecedes given a slight advantage
o NCS advances given a heavy
advantage

e Exists some threshold above _ pementNCs+

R . ) . i Heavy Advantage
which indirect action On-Route is E 2=0.80, b=0.85

insufficient :
e Can be solved with additional :

model parameters
o Rate of movement Off-Route
o The advantage itself
o etc 0

20
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Final Takeaways

Population models and learning models interact!

e Assumptions must be carefully considered when modelling change
o Under what assumptions are results generalizable?
e Attested paths of change are governed by these interactions

o Sometimes explicitly e.g., the St. Louis Corridor
o Sometimes implicitly e.g., New England cot-caught



