Modeling Population Structure and Language Change in the St. Louis Corridor

Jordan Kodner University of Pennsylvania

NWAV 46, November 6, 2017 University of Wisconsin

Outline

- History of the Northern Cities Shift in the St. Louis Corridor
- Frameworks for Population-Level Change
- Modeling Change in the Corridor

Slides Available Here: ling.upenn.edu/~jkodner₂

History of the NCS in the St. Louis Corridor

- Dialect region within Midlands between Chicago and St. Louis
- And Inland North "island"

- Dialect region within Midlands between Chicago and St. Louis
- And Inland North "island"
- The Northern Cities Shift has advanced and retreated there

Shape of the Corridor

• Follows Old Route 66 from outside Chicago to St. Louis

Shape of the Corridor

- Follows Old Route 66 from outside Chicago to St. Louis
- Route 66 passed through Springfield and Bloomington,

Shape of the Corridor

- Follows Old Route 66 from outside Chicago to St. Louis
- Route 66 passed through Springfield and Bloomington,
- And near Decatur, Peoria, Champaign,
- And many small towns

Route 66

- Construction began in 1926
- Replaced a series of unpaved roads and canals
- Connected the main streets of towns along its path

Route 66

- Construction began in 1926
- Replaced a series of unpaved roads and canals
- Connected the main streets of towns along its path
- Superseded by I-55 in 1957
- Decommissioned in 1985

NCS in the Corridor

 NCS entered the Corridor via Route 66 during the Great Depression (Only period with net migration

out of Chicago into smaller cities)

NCS in the Corridor

- NCS entered the Corridor via Route 66 during the Great Depression (Only period with net migration out of Chicago into smaller cities)
- NCS observed first in "on-route" cities, then in "off-route" cities
- Has since largely receded

- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route
 - Peaks Off-Route about one generation later

Friedman 2014

- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route
 - Peaks Off-Route about one generation later

- Path of change is different On-Route and Off-Route
 - NCS peaks first On-Route
 - NCS peaks higher On-Route
 - Peaks Off-Route about one generation later
- Similar path for all variables

On-Route

Off-Route

Friedman 2014

The Hypothesis (Friedman 2014)

- Adult speakers imported the NCS to the Corridor in the 1930s
- It was transmitted to learners in On-Route communities
- These diffused it to nearby towns Off-Route
- Where is it was acquired by learners about a generation later

The Hypothesis (Friedman 2014)

- Adult speakers imported the NCS to the Corridor in the 1930s
- It was transmitted to learners in On-Route communities
- These diffused it to nearby towns Off-Route
- Where is it was acquired by learners about a generation later
- Historical data is highly suggestive of this course of events
- Is there a way to test it without a time machine?

The Hypothesis (Friedman 2014)

- Adult speakers imported the NCS to the Corridor in the 1930s
- It was transmitted to learners in On-Route communities
- These diffused it to nearby towns Off-Route
- Where is it was acquired by learners about a generation later
- Historical data is highly suggestive of this course of events
- Is there a way to test it without a time machine?
- Yes! We can simulate it

Modeling Population-Level Change

• We have lots of data on historical change and change in progress - evidence

- We have lots of data on historical change and change in progress evidence
- We have logically derived theories of change evidence

- We have lots of data on historical change and change in progress evidence
- We have logically derived theories of change evidence
- We have small-scale focused laboratory studies evidence

- We have lots of data on historical change and change in progress evidence
- We have logically derived theories of change evidence
- We have small-scale focused laboratory studies evidence
- But we cannot test population-level change in the lab missing evidence

It would be nice to test cause and effect directly.

- We have lots of data on historical change and change in progress evidence
- We have logically derived theories of change evidence
- We have small-scale focused laboratory studies evidence
- But we cannot test population-level change in the lab missing evidence

It would be nice to test cause and effect directly.

Simulation provides that outlet.

A useful tool in computational biology, epidemiology, ... geology, etc.

- **1. Concrete Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks

1. Concrete Frameworks

- Individual agents on a grid moving randomly and interacting (e.g., Harrison et al. 2002, Satterfield 2001, Schulze et al. 2008, Stanford & Kenny 2013)
- + Gradient interaction probability for free
- + Diffusion is straightforward
- Not a lot of control over the network
- Thousands of degrees of freedom -> should run many many times -> slow
- Unclear how to include a learning model

- **1. Concrete Frameworks**
- 2. Network Frameworks
 - Speakers are nodes in a graph, edges are possibility of interaction (e.g., Baxter et al. 2006, Baxter et al. 2009, Blythe & Croft 2012, Fagyal et al. 2010, Minett & Wang 2008, Kauhanen 2016)
 - + Much more control over network structure
 - + Easy to model concepts from the sociolinguistic lit. (e.g., strong/weak)
 - Nodes only interact with immediate neighbors -> slow and less realistic?
 - Practically implemented as random interactions between neighbors -> same problem as #1

- **1. Concrete Frameworks**
- 2. Network Frameworks
- 3. Algebraic Frameworks
 - Expected outcome of all interactions is calculated directly (e.g., Abrams & Stroganz 2003, Baxter et al. 2006, Minett & Wang 2008, Niyogi & Berwick 1997)
 - + Less reliance on random processes -> faster and more direct
 - + Clear how to insert learning models into the framework
 - No network structure! Always implemented over perfectly mixed populations

What We Use

• An algebraic model operating on network graphs

What We Use

- An algebraic model operating on network graphs
 - No random process in the core algorithm
 - Fast and efficient
 - Models language change in social structures

The best of both worlds!

Vocabulary for this Talk

Different research traditions, Different vocabularies

L: That which is transmitted

Language ≈ Variable ≈ *Lect ≈ E-Language

G: That which generates/describes/distinguishes L That which is learned/influenced by L Grammar ≈ Variant ≈ I-Language

The Model

Language change is a two step loop

- 1. Propagation: calculate how L spread
- 2. Acquisition: calculate how G are learned

The Model

Language change is a two step loop

- 1. Propagation: calculate how L spread
- 2. Acquisition: calculate how G are learned

If this were a linear chain,

$$L_0 \rightarrow G_1 \rightarrow L_1 \rightarrow G_2 \rightarrow L_2 \rightarrow \dots \rightarrow L_n \rightarrow G_{n+1} \rightarrow \dots$$

Mathematical Description

[REDACTED]

Propagation

Network Structure

• Nodes

- How many people are there?
- How are people clustered? Socially or geographically?
- Do people migrate?

forum.qt.io

Propagation

Network Structure

• Nodes

- How many people are there?
- How are people clustered? Socially or geographically?
- Do people migrate?

• Edges

- Are interactions bidirectional?
- Are interactions equal? By likelihood, frequency, or social valuation?
- Can the mode of interaction change over time?

forum.qt.io
Network Structure

• Nodes

- How many people are there?
- How are people clustered? Socially or geographically?
- Do people migrate?

• Edges

- Are interactions bidirectional?
- Are interactions equal? By likelihood, frequency, or social valuation?
- Can the mode of interaction change over time?

Replacement

- Are we modeling large scale (generations) or small scale (older/younger siblings) change?
- \circ Does the network grow or shrink?

forum.qt.io

Modeling Change in the Corridor

Modelling the Corridor: Network Structure

Community Types:

- Midlands (1; "background")
- Chicago (1)
- **On-Route** (19)
- Off-Route (19)

Modelling the Corridor: Network Structure

Community Types:

- Midlands (1; "background")
- Chicago (1)
- **On-Route** (19)
- Off-Route (19)

Connections:

- Midlands to all On-Route and Off-Route
- Chicago to all On-Route
- On-Route to two adjacent On-Route
- On-Route to one adjacent Off-Route
- Off-Route to one adjacent Off-Route

- Vary a single parameter: Direction of movement to On-Route communities
- In order to test the Great Depression hypothesis

- Vary a single parameter: Direction of movement to On-Route communities
- In order to test the Great Depression hypothesis
- It would be too "easy" if we could vary multiple parameters
 - Movement Off-Route
 - Strength of connections between On-Route and Off-Route
 - Strength of connections between On/Off-Route and Chicago/Midlands
 - Advantage of NCS
 - **Etc.**
- And the results would be less meaningful

- Vary a single parameter: Direction of movement to On-Route communities
- In order to test the Great Depression hypothesis
- It would be too "easy" if we could vary multiple parameters
 - Movement Off-Route
 - Strength of connections between On-Route and Off-Route
 - Strength of connections between On/Off-Route and Chicago/Midlands
 - Advantage of NCS
 - **Etc.**
- And the results would be less meaningful

Still important! Just not the focus of the current study...

- Vary a single parameter: Direction of movement to On-Route communities
- In order to test the Great Depression hypothesis

Stage 1 - 5 iterations

No migration (speaker interaction only)

Stage 2 - 20 iterations

2% migration from Chicago to On-Route "Great Depression"

Stage 3 - 75 iterations

2% migration from Midlands to On-Route "Post-Depression"

Modelling the Corridor: The Variable

- Treating the NCS as a single binary variable subject to competing grammars
- Community Variable Distributions:
 - Chicago fixed at 100% NCS+
 - Midlands fixed at 100% NCS-
 - On/Off-Route begins 100% NCS- but is allowed to vary

Modelling the Corridor: The Variable

- Treating the NCS as a single binary variable subject to competing grammars
- Community Variable Distributions:
 - Chicago fixed at 100% NCS+
 - Midlands fixed at 100% NCS-
 - On/Off-Route begins 100% NCS- but is allowed to vary
- Tested as neutral, slightly advantaged, and heavily advantaged change

Two-Compartment Systems

 A type of dynamical system arising in in electrical engineering, medicine, chemistry, ecology...

Two-Compartment Systems

- A type of dynamical system arising in in electrical engineering, medicine, chemistry, ecology...and linguistics!
- Here, On-Route and Off-Route are the compartments
- And the time for variable propagation is the delay

Results: Neutral Change

• A classic two-compartment pattern arises

Results: Neutral Change

- A classic two-compartment pattern arises
- NCS peaks higher and earlier On-Route than Off-Route

Results: Neutral Change

- A classic two-compartment pattern arises
- NCS peaks higher and earlier On-Route than Off-Route
- NCS continues to increase
 Off-Route even after On-Route
 population movements are
 reversed

Results: Advantaged Change

- Advantaged change resists being "tamped down" Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage

Results: Advantaged Change

- Advantaged change resists being "tamped down" Off-Route
 - NCS recedes given a slight advantage
 - NCS advances given a heavy advantage
- Exists some threshold above which indirect action via On-Route is insufficient

Can Great Depression migrations account for the general path of change?

Can Great Depression migrations account for the general path of change? YES!

• Two-compartment pattern arises

Can Great Depression migrations account for the general path of change? YES!

• Two-compartment pattern arises

Was it the only factor?

Can Great Depression migrations account for the general path of change? YES!

• Two-compartment pattern arises

Was it the only factor? NO...

Discrepancies

Gap between the peaks

• Due to our (overly) simple schematized network

Discrepancies

Gap between the peaks

- Due to our (overly) simple schematized network
- **Persistent NCS Off-Route**
 - Could force it into the model...
 - But pattern strongly suggestive of social factors

Questions?

Code Available Here:

github.com/jkodner05/NetworksAndLangChange

Slides Available Here: ling.upenn.edu/~jkodner

Special Thanks: Chris Cerezo Falco Charles Yang ARO NDSEG

Extra slides: Math

Special Acknowledgement: Christopher Cerezo Falco (UPenn)

Network Structure

- *n* x *n* adjacency matrix A
 - Value at a_{ii} indicates interaction from *j* to *i*
 - Must be column stochastic (columns sum to 1)
 - Undirected if for all $i, j, a_{ii} = a_{ii}$ (result row stochastic)

- **A** *n* x *n* adjacency matrix
- H n x c community-membership
- B c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs
- α jump parameter

Network Structure

- *n* x *n* adjacency matrix A
 - Value at a_{ii} indicates interaction from *j* to *i*
 - Must be column stochastic (columns sum to 1)
 - Undirected if for all i,j, $a_{ji} = a_{jj}$ (result row stochastic)
- *n* x c indicator matrix H
 - Values are 0 or 1
 - Identifies individuals as members of communities
 - H = I (n=c) if community membership is irrelevant

- A *n* x *n* adjacency matrix
 - H n x c community-membership
 - B c x g distr. of grammars in comms
 - P c x g distr. of grammars in inputs
 - α jump parameter

Distribution of Grammars

- A *n* x *n* adjacency matrix
- H n x c community-membership
- **B** c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs
- α jump parameter

- c x g distribution of grammars (production) B₊
 - \circ Value at b_{ii} indicates proportion of speaker j's outputs generated by grammar i
 - Must be column stochastic (columns sum to 1)
 - Indicator matrix if individuals only entertain one grammar

Distribution of Grammars

- A *n* x *n* adjacency matrix
- H n x c community-membership
- **B** c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs
 - α jump parameter

- c x g distribution of grammars (production) B,
 - \circ Value at b_{ii} indicates proportion of speaker j's outputs generated by grammar i
 - Must be column stochastic (columns sum to 1)
 - Indicator matrix if individuals only entertain one grammar
- c x g distribution of grammars (reception) P_{t+1}
 - \circ Value at \mathbf{p}_{ii} indicates proportion of speaker j's inputs generated by grammar i
 - Must be column stochastic (columns sum to 1)
 - Input to the acquisition algorithm
 - Calculated by Grammar Distribution Function

Distribution of Grammars

- **A** *n* x *n* adjacency matrix
- H *n* x c community-membership
- **B** c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs
 - **α** jump parameter

- $c \ge g$ distribution of grammars (production) B_{t}
 - \circ Value at b_{ii} indicates proportion of speaker j's outputs generated by grammar i
 - Must be column stochastic (columns sum to 1)
 - Indicator matrix if individuals only entertain one grammar
- c x g distribution of grammars (reception) P_{t+1}
 - \circ Value at p_{ii} indicates proportion of speaker j's inputs generated by grammar i
 - Must be column stochastic (columns sum to 1)
 - Input to the acquisition algorithm
 - Calculated by Grammar Distribution Function
- Scalar "jump" parameter α
 - Between 0 and 1

• Probability of interaction from *i* to *j* equals the probability of travelling from *i* to *j* along some path

- Probability of interaction from *i* to *j* equals the probability of travelling from *i* to *j* along some path
- Edge weight is segment probability between adjacent *i* and *j*

- Probability of interaction from *i* to *j* equals the probability of travelling from *i* to *j* along some path
- Edge weight is segment probability between adjacent *i* and *j*
- Probability of taking another jump decays according to geometric distribution

- Probability of interaction from *i* to *j* equals the probability of travelling from *i* to *j* along some path
- Edge weight is segment probability between adjacent *i* and *j*
- Probability of taking another jump decays according to geometric distribution
- Interaction likelihood decreases with social distance

Grammar Distribution Function

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1}$$

- A *n* x *n* adjacency matrix
- α jump parameter
- H *n* x c community-membership
- **B** c x g distr. of grammars in comms
- P c x g distr. of grammars in inputs

Grammar Distribution Function

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1}$$

• Single calculation for the entire population...FAST
Grammar Distribution Function

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1} \mathbf{H} (\mathbf{H}^{\top} \mathbf{H})^{-1}$$

- Single calculation for the entire population...FAST
- Requires an *n* x *n* matrix inversions...MEMORY INTENSIVE

Tracking Communities

- If fine-grain detail is unnecessary, tracking community averages provides substantial computational speedup when *c* << *n*
- If each community is internally uniform, n x n A admits a c x c equitable-partition A^π
- Yielding a more efficient but equivalent update formula for P

$$\mathbf{A}^{\boldsymbol{\pi}} = (\mathbf{H}^{\top}\mathbf{H})^{-1}\mathbf{H}^{\top}\mathbf{A}\mathbf{H}$$
$$\mathbf{P}_{t+1} = \boldsymbol{\alpha}\mathbf{B}^{\top}\mathbf{H}(\mathbf{I} - (1 - \boldsymbol{\alpha})\mathbf{A}^{\boldsymbol{\pi}})^{-1}(\mathbf{H}^{\top}\mathbf{H})^{-1}$$

Anecdotally, I can run n = 20,000 nets on my laptop with A^{TT} about as fast as n = 2,000 net with A

Tracking Individuals

If c = n, then H is n x n, and the full descriptive detail of the model is available,
 H becomes the identity matrix, and the formula for P can be simplified

$$\mathbf{P}_{t+1} = \mathbf{B}^{\top} \boldsymbol{\alpha} \left(\mathbf{I} - (1 - \boldsymbol{\alpha}) \mathbf{A} \right)^{-1}$$

Transmission

- Dependent on the learning model
- Our implementation is modular, so many learning models can be slotted in
 - e.g., trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)

Transmission

- Dependent on the learning model
- Our implementation is modular, so many learning models can be slotted in
 - e.g., trigger-based learner (Gibson & Wexler 1994)
 - Variational learner (Yang 2000)
- Let L be the distribution of grammars internalized by a learner who heard P
 - L is a matrix consisting of g vectors $l_1, l_2, ..., l_g$
- Define *g* transition matrices $T_1, T_2, ..., T_g$, one for each potential target grammar

$$\mathbf{I}_i = \text{dominant eigenvector of } \sum_{j=1}^g \mathbf{P}_{t+1;j,i} \mathbf{T}_j$$

Transmission and Grammatical Advantage

- If L = P, learners internalize variants at the rate they hear them
 - This yields neutral change
- Otherwise, learners choose variants in a way that biases some over others
 - Some variants have an advantage over others
 - This yields S-curve change in perfectly mixed populations

- Let there be two languages L₁ and L₂, the extensions of g₁ and g₂, produced with probabilities P₁ and P₂.
- $\mathbf{a} = \mathbf{P}_1[\mathbf{L}_1 \text{ union } \mathbf{L}_2]$ $\mathbf{1} \mathbf{a} = \mathbf{P}_1[\mathbf{L}_1 \setminus \mathbf{L}_2]$
- $b = P_2[L_1 \text{ union } L_2]$ $1 b = P_2[L_2 \setminus L_1]$

- Let there be two languages L₁ and L₂, the extensions of g₁ and g₂, produced with probabilities P₁ and P₂.
- $a = P_1[L_1 \text{ union } L_2]$ $1 a = P_1[L_1 \setminus L_2]$
- $\mathbf{b} = \mathbf{P}_2[\mathbf{L}_1 \text{ union } \mathbf{L}_2]$ $\mathbf{1} \mathbf{b} = \mathbf{P}_2[\mathbf{L}_2 \setminus \mathbf{L}_1]$
- Let T₁ and T₂ be transition matrices assuming g₁ and g₂ are the target grammars respectively
- $T_1 = [1 \ 0 ; 1-a \ a] \quad T_2 = [b \ 1-b ; 0 \ 1]$

- T1 =[1 0] [1-a a]
- T2 =[b 1-b] [0 1]

• If the target grammar is g1, then in the limit...

- T1 =[1 0] [1-a a]
- T2 =[b 1-b] [0 1]

- If the target grammar is g1, then in the limit...
 - Learners who initially hypothesize g1 will always remain in g1

T1 =[1 0] [1-a a]

T2 =[b 1-b] [0 1]

- If the target grammar is g1, then in the limit...
 - Learners who initially hypothesize g1 will always remain in g1
 - Learners who initially hypothesize
 g2 will remain at g2 with
 probability a

T1 =[1 0] [1-a a]

T2 =[b 1-b] [0 1]

- If the target grammar is g1, then in the limit...
 - Learners who initially hypothesize g1 will always remain in g1
 - Learners who initially hypothesize
 g2 will remain at g2 with
 probability a
 - Or switch to g1 with probability
 1-a