A Case of “Elsewhere Reversal” in Iranian Armenian Verbs

Jordan Kodner
Hossep Dolatian
Stony Brook University

PLC 47
March 19, 2023
University of Pennsylvania
Outline

Description of the Change
- Armenian varieties
- Armenian verbal morphology
- The “Elsewhere Reversal”

Accounting for the Change
- Indirect facilitation by a phonological change
- Support from Armenian variety typology
- A quantitative acquisition-based analysis
Outline

Description of the Change
● Armenian varieties
● Armenian verbal morphology
● The “Elsewhere Reversal”

Accounting for the Change
● Indirect facilitation by a phonological change
● Support from Armenian variety typology
● A quantitative acquisition-based analysis
The Armenian Language(s)

- A branch of Indo-European spoken indigenously in the southern Caucasus and eastern Anatolia
- A large diaspora in former Ottoman, Soviet, and Persian territories as well as the USA
- Two primary branches: Western and Eastern
- Our focus is Tehrani Iranian Armenian spoken in Tehran and Los Angeles
 Eastern, similar to Standard Armenian
The Armenian Language(s)

- A branch of Indo-European spoken indigenously in the southern Caucasus and eastern Anatolia
- A large diaspora in former Ottoman, Soviet, and Persian territories as well as the USA
- Two primary branches: **Western** and **Eastern**
- Our focus is **Tehrani Iranian Armenian** spoken in Tehran and Los Angeles
 Eastern, similar to **Standard Armenian**

Standard Eastern Armenian is conservative in the relevant paradigm, so we use it as a proxy for pre-modern Iranian Armenian
Armenian Verbs

- Distinguishes perfectivity in the past tense
- Two inflectional classes by theme vowel: A-Class, E-Class. **E-Class is the largest**

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
</tr>
<tr>
<td>PST.IPFV.3PL</td>
<td>kardain</td>
<td>ergein</td>
</tr>
</tbody>
</table>
Armenian Verbs

- Distinguishes perfectivity in the past tense
- Two inflectional classes by theme vowel: A-Class, E-Class. **E-Class is the largest**
- Many irregular E-Class perfects show -a- instead of -ec’i-

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
<td>karan</td>
</tr>
<tr>
<td>PST.IPFV.3PL</td>
<td>kardain</td>
<td>ergein</td>
<td>utein</td>
</tr>
</tbody>
</table>
Armenian Verbs

- Distinguishes perfectivity in the past tense
- Two inflectional classes by theme vowel: A-Class, E-Class. E-Class is the largest
- Many irregular E-Class perfects show `-a-` instead of `-ec’i-`

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPFV.3PL</td>
<td>kardain</td>
<td>ergein</td>
<td>utein</td>
</tr>
</tbody>
</table>

Vocab Items for Perfect

- `ASP[IPFV]T[PST] ↔ -Ø-i-`
An Iranian Innovation

- Regular E-Class perfects have an ending -$a-$ instead of -$c’i-$
- They pattern like the E-Class irregulars of conservative varieties

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPV.3PL</td>
<td>kardain</td>
<td>ergin</td>
<td>utein</td>
</tr>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergan</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPV.3PL</td>
<td>kardain</td>
<td>ergin</td>
<td>utin</td>
</tr>
</tbody>
</table>

Vocab Items for Perfect

- $\text{ASP[Pfv]} \leftrightarrow \emptyset-a- \text{/ LIST} $
- $-c’i- \text{/ ELSEWHERE}$

A case of analogical extension

A morphological pattern has spread from a smaller irregular class to a larger regular class!
An ‘Elsewhere Reversal’

The conditioned and default realizations seem to have flip-flopped!

- \(-c’-i\)- was the default, now it’s limited to A-Class
- \(-Ø-a\)- was limited to irregulars, now it’s the default

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPV.3PL</td>
<td>kardain</td>
<td>ergein</td>
<td>utein</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergan</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPV.3PL</td>
<td>kardain</td>
<td>ergin</td>
<td>utin</td>
</tr>
</tbody>
</table>

Vocab Items for Perfect

- c’-i- / ELSEWHERE

- ASP[PfV] T[Pst] ↔ -c’-i- / Th[=a]____
- Ø-a- / ELSEWHERE
Two Additional Observations

Some regular E-Class verbs already had -a- perfects

- Observed in Western as well as Eastern Armenian
- They coexist with -ec’i- perfects (sometimes only in the 3rd person singular)
- Tend to be high-frequency verbs (‘do,’ ‘bring,’ ‘give,’ ‘say,’...)

Outside of Iranian Armenian, -a- perfects are more common in

- Intransitive verbs
- Verbs with monosyllabic roots

1 Martirosyan 2009
Outline

Description of the Change
- Armenian varieties
- Armenian verbal morphology
- The “Elsewhere Reversal”

Accounting for the Change
- Indirect facilitation by a phonological change
- Support from Armenian variety typology
- A quantitative acquisition-based analysis
There are actually two changes here...

1. **A Phonological Change**
 - **Hiatus glide insertion** > **Deletion**
 - **Conservative** > **Iranian**
 - /ei/ > [eji]
 - /ei/ -> [i]

2. **A Morphological Change**
 - **The perfect Elsewhere Reversal**
 - **Conservative** → **Iranian**
 - -ec’i- → -a-

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPVF.3PL</td>
<td>kard[ajin]</td>
<td>erg[ejin]</td>
<td>ut[ejin]</td>
</tr>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergan</td>
<td>keran</td>
</tr>
</tbody>
</table>
There are actually two changes here...

1. **A Phonological Change**
 - **Hiatus glide insertion** > **Deletion**
 - **Conservative** > **Iranian**
 - /ei/ > [eji]

2. **A Morphological Change**
 - **The perfect Elsewhere Reversal**
 - **Conservative** → **Iranian**
 - -ec’i- → -a-

Proposal: Indirect Causation

1. The phono change made a novel alternative morpho generalization available to learners
2. A speaker adopting this novel generalization could spread -a- to regular E-Class verbs via normal over-regularization

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergec’in</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPV.3PL</td>
<td>kard[ajin]</td>
<td>erg[ejin]</td>
<td>ut[ejin]</td>
</tr>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergan</td>
<td>keran</td>
</tr>
</tbody>
</table>
Two Options after the Phonological Change

Conservative Generalization

- ASP[PFV] ↔ Θ / LIST
- ASP[PFV] ↔ -c’-
- ASP[IPFV] ↔ Θ
- T[PST] ↔ -a- / LIST
- T[PST] ↔ -i-

Predicts ergec’in

Innovative Generalization

- ASP[PFV] ↔ -c’- / TH[=a]
- ASP[PFV] ↔ Θ
- ASP[IPFV] ↔ Θ
- T[PST] ↔ -a- / √-ASP[PFV]
- T[PST] ↔ -i-

Predicts ergan

There are many ways to implement this. The idea is:
When there is no (overt) TH, perfect = -a-, imperfect = -i-.
Predictions

If the phonological change set up the Elsewhere Reversal, then

● A-Class should retain -ac’i- perfects because its imperfect retains [aji]
● If an Armenian variety has the Elsewhere Reversal, it must also have /ei/>[i]
● If an Armenian variety has /ei/>[i], it may or may not have have the reversal
Predictions

If the phonological change set up the Elsewhere Reversal, then

- A-Class should retain \(-ac’i - \) perfects because its imperfect retains [aji] ✔
- If an Armenian variety has the Elsewhere Reversal, it must also have /ei/>[i]
- If an Armenian variety has /ei/>[i], it may or may not have have the reversal

<table>
<thead>
<tr>
<th>Form</th>
<th>A-Class read</th>
<th>E-Class sing</th>
<th>Irreg. eat</th>
</tr>
</thead>
<tbody>
<tr>
<td>INF</td>
<td>kardal</td>
<td>ergel</td>
<td>utel</td>
</tr>
<tr>
<td>PST.PFV.3PL</td>
<td>kardac’in</td>
<td>ergan</td>
<td>keran</td>
</tr>
<tr>
<td>PST.IPFV.3PL</td>
<td>kardain</td>
<td>ergin</td>
<td>utin</td>
</tr>
</tbody>
</table>
Predictions

If the phonological change set up the Elsewhere Reversal, then

- A-Class should retain -\textit{ac’i}- perfects because its imperfect retains [aji] ✔
- If an Armenian variety has the Elsewhere Reversal, it must also have /ei/ > [i] ✔
- If an Armenian variety has /ei/ > [i], it may or may not have have the reversal ✔

<table>
<thead>
<tr>
<th>Imperfect</th>
<th>Perfect</th>
<th># of Varieties Surveyed</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ein</td>
<td>-ec’in</td>
<td>(Standard Eastern)</td>
</tr>
<tr>
<td>-in</td>
<td>-ec’in</td>
<td>10</td>
</tr>
<tr>
<td>-in</td>
<td>-(ec’)*in</td>
<td>3</td>
</tr>
<tr>
<td>-in</td>
<td>-an</td>
<td>1 (Tehrani Iranian)</td>
</tr>
<tr>
<td>-ein</td>
<td>-an or -in</td>
<td>unattested</td>
</tr>
</tbody>
</table>

- /ei/ > [ejil], no reversal
- /ei/ > [i], no reversal
- /ei/ > [i], optional reversal
- /ei/ > [i], complete reversal
- /ei/ > [ejil], reversal
The Actuation Problem

Under what conditions was the novel grammar innovated?

- The Actuation Problem.\(^1\) We can never know exactly for sure
 …But we can approach a solution asymptotically

\(^1\) Weinreich, Labov, & Herzog 1968
The Actuation Problem

Under what conditions was the novel grammar innovated?

- The Actuation Problem.\(^1\) We can never know exactly for sure
 …But we can approach a solution asymptotically

Helps to have a precise definition of actuation\(^2\)…

Actuation = Innovation + uptake into the speech community
(The hand-off from an individual-level process to a population-level one)

\(^1\) Weinreich, Labov, & Herzog 1968, \(^2\) Labov, Yaeger, & Steiner 1972
The Actuation Problem

Under what conditions was the novel grammar innovated?

- The Actuation Problem.\(^1\) We can never know exactly for sure …But we can approach a solution asymptotically

Helps to have a precise definition of actuation\(^2\)…

Actuation = Innovation + uptake into the speech community (The hand-off from an individual-level process to a population-level one)

...And a model of innovation

Adopting a learning model provides insight into under what conditions the novel Iranian Armenian grammar could have been learned

\(^1\) Weinreich, Labov, & Herzog 1968, \(^1\) Labov, Yaeger, & Steiner 1972
The Tolerance Principle (Yang 2016)

- A concrete model for the acquisition of linguistic generalization
- An evaluation metric over linguistic hypotheses
- Developed in the context of the Past Tense Debate
 But has since been applied across levels of the grammar

Serves as our innovation model

- The TP provides a model for learner over-regularization
- Over-regularization is the individual-level analogue to diachronic analogy
The Tolerance Principle (Yang 2016)

How many exceptions is “too many” exceptions?
Given a hypothesized generalization operating over some class, quantitatively define the number of exceptions below which the generalization is tenable

\[N = \text{number of types that should obey the generalization} \]
\[e = \text{number of types that do not obey the generalization} \]
\[\theta = \text{max # of exceptions that can be tolerated} \]

Exceptions are tolerable if \(e < \theta \)
\[\theta = \frac{N}{\ln N} \]
N and e Vary over Individual Development

- N and e are properties of each individual
- N is the number of class members a child has learned so far
- N and e grow as the learner’s vocabulary grows

Can learn generalizations over small N not possible over large N
Visualization of the Tolerance Principle

$N =$ types it should apply to
$e =$ types that are exceptions
$\theta =$ tolerance threshold

e falls in $[0, N]$ and may be less than or greater than θ
Visualization of the Tolerance Principle

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If e is below θ,
acquire pattern as rule
Visualization of the Tolerance Principle

$N =$ types it should apply to
$e =$ types that are exceptions
$\theta =$ tolerance threshold

If e is below θ,
acquire pattern as rule
Otherwise, do not form rule
Visualization of the Tolerance Principle

\(N \) = types it should apply to
\(e \) = types that are exceptions
\(\theta \) = tolerance threshold

If \(e \) is below \(\theta \),
acquire pattern as rule
Otherwise, do not form rule

- \(N \) grows over an individual’s development, \(\theta \) grows more slowly
Visualization of the Tolerance Principle

$N = \text{types it should apply to}$

$e = \text{types that are exceptions}$

$\theta = \text{tolerance threshold}$

If e is below θ,

acquire pattern as rule

Otherwise, do not form rule

- N grows over an individual’s development, θ grows more slowly
- If θ grows faster than e, a pattern may fall into productivity
Visualization of the Tolerance Principle

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If e is below θ, acquire pattern as rule
Otherwise, do not form rule

- N grows over an individual’s development, θ grows more slowly
- If θ grows faster than e, a pattern may fall into productivity
- If e grows faster than θ, a pattern may fall out of productivity
Acquisition in the Past

- Children in the past must have acquired language in the same way that modern children do
 a straightforward application of uniformitarianism
- We can reason about acquisition in the past in the same way we do now

1 Labov 1972 as applied to linguistics, Walkden 2019
Acquisition in the Past

- Children in the past must have acquired language in the same way that modern children do
 a straightforward application of uniformitarianism\(^1\)
- We can reason about acquisition in the past in the same way we do now

Can non-child-directed speech corpora be substituted for child-directed speech to study the relevant problem?
Yes, for the purposes of lexical acquisition\(^2\)

\(^1\) Labov 1972 as applied to linguistics, Walkden 2019, \(^2\) Kodner 2019
Child Lexical Knowledge

- Learners’ vocabularies grow over the course of development
- There is significant individual variation, but consistent trends
- Only on the order of 10^2 for English and German learners by around age 3
- Observed across many languages, ≤ half of these are verbs
- Children have the foundations for language-specific grammars by this point

<table>
<thead>
<tr>
<th>Language</th>
<th>Estimated</th>
<th>Vocab</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>English 2;10-3;0^1</td>
<td>525-1,116</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German 2;6^4</td>
<td>μ = 429, σ > 100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Methodology

Estimate learner vocabularies in increasing increments

- Verbs extracted/annotated from an Eastern Armenian frequency dictionary\(^1\)
- Vocabularies estimated by taking the top \(V\) for \(V=50, 60, ..., 100, 200, ..., 600\)

\(^1\) Ղազարյան 1982
Methodology

Estimate learner vocabularies in increasing increments

- Verbs extracted/annotated from an Eastern Armenian frequency dictionary
- Vocabularies estimated by taking the top \(V \) for \(V = 50, 60, \ldots, 100, 200, \ldots, 600 \)

Explore feasible incrementation pathways

- What novel generalizations (if any) can be tolerated at each \(V \) size?
- These are feasible incrementation pathways for the Elsewhere Reversal as new cohorts successively extend over-generalizations

\(^{1}\) Ղազարյան 1982
Data Summary (Std East)

- E-Class accounts for most verbs
- Irregular, monosyllabic, and intrans. constitute large subsets of E-Class

<table>
<thead>
<tr>
<th>V</th>
<th>E-Class All</th>
<th>Std E-(a)-</th>
<th>E-Class Irreg</th>
<th>E-Class 1(\sigma)</th>
<th>E-Class Intrans</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>33</td>
<td>8</td>
<td>15</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>41</td>
<td>10</td>
<td>17</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td>47</td>
<td>10</td>
<td>18</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>12</td>
<td>23</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>90</td>
<td>63</td>
<td>12</td>
<td>24</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>100</td>
<td>72</td>
<td>12</td>
<td>28</td>
<td>49</td>
<td>28</td>
</tr>
<tr>
<td>200</td>
<td>161</td>
<td>13</td>
<td>54</td>
<td>106</td>
<td>64</td>
</tr>
<tr>
<td>300</td>
<td>243</td>
<td>16</td>
<td>79</td>
<td>144</td>
<td>97</td>
</tr>
<tr>
<td>400</td>
<td>332</td>
<td>17</td>
<td>112</td>
<td>176</td>
<td>144</td>
</tr>
<tr>
<td>500</td>
<td>416</td>
<td>17</td>
<td>143</td>
<td>217</td>
<td>189</td>
</tr>
<tr>
<td>600</td>
<td>508</td>
<td>19</td>
<td>175</td>
<td>250</td>
<td>229</td>
</tr>
</tbody>
</table>
Data Summary (Std East)

- E-Class accounts for most verbs
- Irregular, monosyllabic, and intrans. constitute large subsets of E-Class

We take irregular E-Class verbs with -\(a\)- perfects in Standard as the initial state (blue column) and ignore optional -\(a\)- verbs (conservative assumption)

<table>
<thead>
<tr>
<th>V</th>
<th>E-Class All</th>
<th>Std E -(a)-</th>
<th>E-Class Irreg</th>
<th>E-Class 1(\sigma)</th>
<th>E-Class Intrans</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>33</td>
<td>8</td>
<td>15</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>41</td>
<td>10</td>
<td>17</td>
<td>32</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td>47</td>
<td>10</td>
<td>18</td>
<td>36</td>
<td>16</td>
</tr>
<tr>
<td>80</td>
<td>56</td>
<td>12</td>
<td>23</td>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>90</td>
<td>63</td>
<td>12</td>
<td>24</td>
<td>46</td>
<td>23</td>
</tr>
<tr>
<td>100</td>
<td>72</td>
<td>12</td>
<td>28</td>
<td>49</td>
<td>28</td>
</tr>
<tr>
<td>200</td>
<td>161</td>
<td>13</td>
<td>54</td>
<td>106</td>
<td>64</td>
</tr>
<tr>
<td>300</td>
<td>243</td>
<td>16</td>
<td>79</td>
<td>144</td>
<td>97</td>
</tr>
<tr>
<td>400</td>
<td>332</td>
<td>17</td>
<td>112</td>
<td>176</td>
<td>144</td>
</tr>
<tr>
<td>500</td>
<td>416</td>
<td>17</td>
<td>143</td>
<td>217</td>
<td>189</td>
</tr>
<tr>
<td>600</td>
<td>508</td>
<td>19</td>
<td>175</td>
<td>250</td>
<td>229</td>
</tr>
</tbody>
</table>
1. Initial Over-Generalization

Extend \(-\sigma\)- immediately to all E-Class?

\[N = |E\text{-Class} \subseteq V| \quad e = |\subseteq E\text{-class with }-ec'i- \text{ perfect in Standard}| \]
1. Initial Over-Generalization

Extend $-\alpha-$ immediately to all E-Class? **Impossible.**

$N = |E\text{-Class} \subset V|$
$e = |\subset E\text{-class with } -ec'j- \text{ perfect in Standard}|$

<table>
<thead>
<tr>
<th>V</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N (e)$ Tolerable?</td>
<td>33 (25)</td>
<td>41 (31)</td>
<td>47 (37)</td>
<td>56 (44)</td>
<td>63 (51)</td>
<td>72 (60)</td>
<td>161 (146)</td>
<td>...</td>
</tr>
</tbody>
</table>

\times
1. Initial Over-Generalization

Extend \(-\alpha\) immediately to all E-Class? **Impossible.**

\[N = |E-Class \subset V| \quad e = |\subset E\text{-class with } -ec'i- \text{ perfect in Standard}| \]

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(e)) Tolerable?</td>
<td>33 (25)</td>
<td>41 (31)</td>
<td>47 (37)</td>
<td>56 (44)</td>
<td>63 (51)</td>
<td>72 (60)</td>
<td>161 (146)</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Extend \(-\alpha\) to all Irregular E-Class? **Possible at \(V < 100\)**

\[N = |Irreg\ E-Class \subset V| \quad e = |\subset Irreg\ E\text{-class with } -ec'i- \text{ perfect in Standard}| \]

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(e)) Tolerable?</td>
<td>15 (7)</td>
<td>17 (7)</td>
<td>18 (8)</td>
<td>23 (11)</td>
<td>24 (12)</td>
<td>28 (16)</td>
<td>54 (39)</td>
</tr>
<tr>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

\(? = \text{within 1 of } \theta\)
1. Initial Over-Generalization

Extend -α- immediately to all E-Class Intransitives? Only \(V < 70 \)

\[
N = |\text{E-Class intrans} \subset V| \quad e = |\text{E-class intrans with -ec'i- perf in Std}| \]

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N (e)) Tolerable?</td>
<td>33 (25)</td>
<td>41 (31)</td>
<td>✔️</td>
<td>47 (37)</td>
<td>✔️</td>
<td>56 (44)</td>
<td>✔️</td>
</tr>
</tbody>
</table>

Extend -α- to all Irregular E-Class Intransitives? \(V < 200 \)

\[
N = |\text{Irreg E-Class intrans} \subset V| \quad e = |\text{Irreg E-class intrans with -ec'i- perf in Std}| \]

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N (e)) Tolerable?</td>
<td>15 (7)</td>
<td>✔️</td>
<td>17 (7)</td>
<td>✔️</td>
<td>18 (8)</td>
<td>✔️</td>
<td>23 (11)</td>
</tr>
</tbody>
</table>
2. If -α- Spread to all Irregular E-Class, then...

Further extend -α- to all E-Class Monosyllables? \(V < 70 \)

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N (e))</td>
<td>26 (12) ✔</td>
<td>32 (16) ?</td>
<td>36 (20) ✗</td>
<td>42 (23) ✗</td>
<td>46 (26) ✗</td>
<td>49 (27) ✗</td>
<td>106 (64) ✗</td>
<td>144 (91) ✗</td>
</tr>
</tbody>
</table>

Further extend -α- to all E-Class Intransitives? \(V < 200 \)

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N (e))</td>
<td>10 (5) ✔</td>
<td>11 (5) ✔</td>
<td>16 (9) ?</td>
<td>20 (9) ✔</td>
<td>23 (11) ✔</td>
<td>28 (14) ?</td>
<td>64 (30) ✗</td>
<td>97 (41) ✗</td>
</tr>
</tbody>
</table>

Further extend -α- to all E-Class 1σ Intransitives? \(V < 400 \)

<table>
<thead>
<tr>
<th>(V)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>200</th>
<th>300</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N (e))</td>
<td>10 (5) ✔</td>
<td>11 (5) ✔</td>
<td>16 (9) ?</td>
<td>20 (9) ✔</td>
<td>23 (11) ✔</td>
<td>23 (11) ✔</td>
<td>28 (14) ?</td>
<td>28 (14) ?</td>
</tr>
</tbody>
</table>

42
3. If -α- Spread to all Irreg and 1σ E-Class, then…

Further extend -α- to all E-Class? \(V < 400 \)

Further extend -α- to all E-Class Intransitives? All \(V \)

This process was repeated iteratively to uncover feasible incrementation pathways
Feasible Pathways for Analogical Extension

If \(V = 100 \) is used as the min \(|V|\) needed for incrementation:

- Several pathways for incrementation to the Elsewhere Reversal

Conservative Eastern (Irregulars-only) Elsewhere Reversal Attested Iranian (all E-Class)
Feasible Pathways for Analogical Extension

If $V=100$ is used as the min $|V|$ needed for incrementation:

- Several pathways for incrementation to the Elsewhere Reversal

![Diagram showing pathways from $V=100$ to Irregular Intrans, Irreg 1σ Intrans, Irregular 1σ, and Attested Iranian (all E-Class).]}
Feasible Pathways for Analogical Extension

If $V=100$ is used as the min $|V|$ needed for incrementation:

- Several pathways for incrementation to the Elsewhere Reversal

\[\begin{align*}
\text{Irregular Intrans} &\quad 1\sigma \text{ Intrans} \\
\text{Irreg } 1\sigma \text{ Intrans} &\quad \text{Irregular } 1\sigma \\
\text{Irregular Intrans} &\quad \text{Irregular}
\end{align*}\]
Feasible Pathways for Analogical Extension

If $V=100$ is used as the min $|V|$ needed for incrementation:

- Several pathways for incrementation to the Elsewhere Reversal
Feasible Pathways for Analogical Extension

If $\nu=100$ is used as the min $|\nu|$ needed for incrementation:

- Several pathways for incrementation to the Elsewhere Reversal
Conclusions

Analogical Extension: Just Fortuitous Analogical Leveling

- Analogical change is the population-level diachronic extension of individual learner over-generalization
- Leveling and extension share an identical mechanism
 Extension is just quantitatively less likely to be actuated
Conclusions

Analogical Extension: Just Fortuitous Analogical Leveling

- Analogical change is the population-level diachronic extension of individual learner over-generalization
- **Leveling and extension share an identical mechanism**
 Extension is just quantitatively less likely to be actuated

The Elsewhere Reversal: An epiphenomenon

- Elsewhere reversal is a description of the change based on a particular theoretical analysis, not a mechanism of change
- Similar ontological status to phonological rule reordering itself probably an epiphenomenon
Conclusions

Phonological Change: A Sufficient but not Necessary Condition

- A phonological change is implicated in permitting this morphological change. But only indirectly, through learner innovation.
- Change is a contingent process. Acquisition and social factors come into play. This change did not have to happen just because it could happen.
- Sufficient but necessary condition is backed up by a typological survey.
Conclusions

Phonological Change: A Sufficient but not Necessary Condition
● A phonological change is implicated in permitting this morphological change
 But only indirectly, through learner innovation
● Change is a contingent process. Acquisition and social factors come into play
 This change did not have to happen just because it could happen
● Sufficient but necessary condition is backed up by a typological survey

Precise Predictions: A Directed Search for Armenian Varieties
● The quantitative learning approach here makes precise predictions
● We now have a lead for what to look for in related Eastern Armenian varieties
 What did the grammars mean when they described “optional” -c’-?
The End.
Questions?

Thank You!
- PLC Organizing Committee and Reviewers
- UCLA Armenian Workshop Participants