# Acquiring the Latin Past Participles

## **Synchronic and Diachronic Implications**

Jordan Kodner University of Pennsylvania

> TLS, Feb 14, 2020 Austin, TX

## Outline

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

## **Classical Latin Principal Parts and Conjugations**

- Traditionally classified into 4.5 conjugations distinguished by 4 principal parts
- Conjugations correspond to theme vowels, principal parts to stems

#### **Principal parts**

- **1.** present active indicative 1sg
- 2. present active infinitive
- 3. perfect active indicative 1sg
- 4. past participle (or supine)

| Conj.          | ThV | 1st PP | 2nd PP  | 3rd PP  | 4th PP  | Meaning  |
|----------------|-----|--------|---------|---------|---------|----------|
|                |     | presen | it stem | perfect | pptc    |          |
| 1st            | ā   | amō    | amāre   | amāvī   | amātus  | 'love'   |
| 2nd            | ē   | moneō  | monēre  | топиī   | monitus | 'warn'   |
| 3rd            | е   | legō   | lēgere  | lēgī    | lēctus  | 'choose' |
| 3rd <i>-iō</i> | i   | capiō  | capere  | cēpī    | captus  | 'take'   |
| 4th            | ī   | audiō  | audīre  | audīvī  | audītus | 'hear'   |

## **The Principal Parts and Conjugations**

• Stems are not reliably derivable from one another

| 1st PP | 2nd PP  | 3rd PP | 4th PP  |
|--------|---------|--------|---------|
| amō    | amāre   | amāvī  | amātus  |
| sonō   | sonāre  | sonuī  | sonitus |
| moneō  | monēre  | monuī  | monitus |
| maneō  | manēre  | mānsī  | mānsus  |
| teneō  | tenēre  | tenuī  | tentus  |
| audiō  | audīre  | audīvī | auditus |
| pellō  | pellere | pepulī | pulsus  |
| capiō  | capere  | cēpī   | captus  |
| ferō   | ferre   | tulī   | lātus   |

## **The Principal Parts and Conjugations**

• Stems are not reliably derivable from one another

Verbs with similar stems in one column may not have similar stems in the others

| 1st PP | 2nd PP  | 3rd PP | 4th PP  |
|--------|---------|--------|---------|
| amō    | amāre   | amāvī  | amātus  |
| sonō   | sonāre  | sonuī  | sonitus |
| moneō  | monēre  | топиī  | monitus |
| maneō  | manēre  | mānsī  | mānsus  |
| teneō  | tenēre  | tenuī  | tentus  |
| audiō  | audīre  | audīvī | auditus |
| pellō  | pellere | pepulī | pulsus  |
| capiō  | capere  | cēpī   | captus  |
| ferō   | ferre   | tulī   | lātus   |

## "Regularity" of the Conjugations

- Many past participles are not predictably derivable from the present stem
- Traditionally noted that 1st is overwhelmingly regular, 2nd and 4th are mostly regular, 3rd is not<sup>1</sup>

| Conjugation <sup>1</sup> | # Verbs | # "Regular" | % "Regular" | Form       |
|--------------------------|---------|-------------|-------------|------------|
| 1st                      | 360     | 345         | 96%         | -ātus      |
| 2nd                      | 120     | 90          | 75%         | -itus/-tus |
| 3rd                      | 170     | 60          | 35%         | -itus      |
| 4th                      | 60      | 40          | 67%         | -ītus      |

## "Regularity" of the Conjugations

- Many past participles are not predictably derivable from the present stem
- Traditionally noted that 1st is overwhelmingly regular, 2nd and 4th are mostly regular, 3rd is not<sup>1</sup>

| What counts | as |
|-------------|----|
| regular?    |    |

| Conjugation <sup>1</sup> | # Verbs | # "Regular" | % "Regular" | Form       |
|--------------------------|---------|-------------|-------------|------------|
| 1st                      | 360     | 345         | 96%         | -ātus      |
| 2nd                      | 120     | 90          | 75%         | -itus/-tus |
| 3rd                      | 170     | 60          | 35%         | -itus      |
| 4th                      | 60      | 40          | 67%         | -ītus      |

#### **The Elsewhere Condition**

#### **Listing vs Derivations**

- A common trade-off in theoretical morphology
- "Regular" patterns are derived, "irregulars" are listed exceptions

## **The Elsewhere Condition**

#### **Listing vs Derivations**

- A common trade-off in theoretical morphology
- "Regular" patterns are derived, "irregulars" are listed exceptions

#### Applied to the Classical Latin PPtcs,

- Which pptcs really are productively derived?
- Is the pptc derived from the present, perfect, or neither?
- What other than the theme vowel cues speakers?

## Leveraging Child Language Acquisition

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate"<sup>1</sup>
  - How are patterns and exceptions learned?
  - How are developmental trajectories explained?

## Leveraging Child Language Acquisition

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate"<sup>1</sup>
  - How are patterns and exceptions learned?
  - How are developmental trajectories explained?

#### Virtually everyone agrees: it isn't just token frequency (and derived measures)!<sup>2</sup>

<sup>1</sup> Rumelhart & McClelland 1986, Pinker & Prince 1988, Pinker 1994, Albright & Hayes 2006, Yang 2005, *and many more* <sup>2</sup> Aronoff 1976, MacWhinney 1978, Bybee 1985, Baayen 1993, Elman 1998, Pierrehumbert 2003, Yang 2016

## Leveraging Child Language Acquisition

- Determination of productive patterns is a central question in acquisition
- Exemplified by the English "Past Tense Debate"<sup>1</sup>
  - How are patterns and exceptions learned?
  - How are developmental trajectories explained?

#### Virtually everyone agrees:

#### it isn't just token frequency (and derived measures)!<sup>2</sup>

- → Quantitative corpus analysis alone won't cut it
- → Should work through the implications of some concrete learning mechanism

## Outline

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

## **The Tolerance Principle<sup>1</sup>**

- A concrete model for the acquisition of linguistic generalization
- Developed in the context of the Past Tense Debate

#### **Example Applications**

- Is +ed the default past for English verbs?
- Is vowel mutation as in *sing~sang* productive among similar verbs?

## **The Tolerance Principle**

- An evaluation metric<sup>1</sup> over linguistic hypotheses
- Is derived from
  - an Elsewhere Condition for 'rules' and 'exceptions'<sup>2</sup>
  - frequency-rank correlated lexical access<sup>3</sup>
  - Generally Zipfian input distributions
- Received psychological backing from artificial language learning experiments<sup>4</sup>

## **The Tolerance Principle**

Given a hypothesized generalization *R* operating over a class *C*, quantitatively define the number of exceptions below which the generalization is tenable

## **The Tolerance Principle**

Given a hypothesized generalization *R* operating over a class *C*, quantitatively define the number of exceptions below which the generalization is tenable

- **N** = number of types that should obey the generalization
- *e* = number of types that do not obey the generalization
- θ = max # of exceptions that can be tolerated

#### **Exceptions are tolerable if**



#### N and e Vary over Individual Development

- *N* and *e* are properties of each individual
- *N* is the number of class members a child has learned so far
- *N* and *e* grow as the learner's vocabulary grows
- Can learn generalizations over small *N* not possible over large *N*

N = types it should apply to e = types that are exceptions  $\theta$  = tolerance threshold



e falls in [0,N] and may be less than or greater than  $\theta$ 

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold



If e is below  $\theta$ , acquire generalization

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold



If *e* is below θ, acquire generalization Otherwise, do not generalize

N = types it should apply to
e = types that are exceptions
θ = tolerance threshold

If *e* is below θ, acquire generalization Otherwise, do not generalize



• N grows over an individual's development,  $\theta$  grows more slowly



- N grows over an individual's development,  $\theta$  grows more slowly
- If **\theta** grows faster than *e*, a generalization may fall into productivity



- *N* grows over an individual's development,  $\theta$  grows more slowly
- If  $\theta$  grows faster than e, a generalization may fall into productivity
- If e grows faster than  $\theta$ , a generalization may fall out of productivity

### **Child Lexical Knowledge**

- Learners' vocabularies grow over the course of development
- There is significant individual variation, but consistent trends
- Only on the order of 10<sup>2</sup> for English and German learners by around age 3
- Children have the foundations for language-specific grammars by this point

| Language                      | Estimated  Vocab |
|-------------------------------|------------------|
| English 2;10-3;0 <sup>1</sup> | 525-1,116        |
| German 2;6 <sup>2</sup>       | μ = 429, σ > 100 |

## Outline

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

- **1.** All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

- **1.** All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

- **1.** All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

- **1.** All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

- **1.** All children receive unique input yet exhibit gross developmental uniformity<sup>1</sup>
- 2. The type frequency of a pattern is crucial for acquisition of generalizations, as opposed to token frequency or attestation of initial items<sup>2</sup>
- 3. Token frequencies correlate with relative order of acquisition<sup>3</sup>
- 4. Early learner vocabularies are small<sup>4</sup>

#### As a result,

- Applying a frequency cutoff to lemmas in CDS approximates a "typical" child
- Insight taken by type frequency-based models of acquisition<sup>5</sup>

#### **Acquisition in the Past**

- Children in the past must have acquired language in the same way that modern children do this is straightforward uniformitarianism<sup>1</sup>
- We can reason about acquisition in the past in the same way we do now

#### Can non-CDS be substituted for CDS to study the relevant problem?

#### **Acquisition in the Past**

- Children in the past must have acquired language in the same way that modern children do this is straightforward uniformitarianism<sup>1</sup>
- We can reason about acquisition in the past in the same way we do now

#### Can non-CDS be substituted for CDS to study the relevant problem? Yes, for the purposes of lexical acquisition<sup>2</sup>

#### **Data Set**

#### **Perseus Corpus**

- Scraped all Old and Classical Latin texts from website HTML
  - 3rd BC AD 2nd inclusive
  - ~3.5mil tokens
- More than available by download undocumented "feature" :-\

#### Largest plain text OL/CL corpus?

#### **Data Set**

#### **Perseus Corpus**

- Scraped all Old and Classical Latin texts from website HTML
  - 3rd BC AD 2nd inclusive
  - ~3.5mil tokens
- More than available by download

#### **Post-Processing**

- POS-tagged and lemmatized with modified CLTK library
  - **1,292 unique verb lemmas when derivational prefixes removed**
- Scraped Latin Wiktionary verbs to match lemmas to principal parts

#### **Data Set**

#### **Perseus Corpus**

- Scraped all Old and Classical Latin texts from website HTML
  - 3rd BC AD 2nd inclusive
  - ~3.5mil tokens
- More than available by download

#### **Post-Processing**

- POS-tagged and lemmatized with modified CLTK library
  - **1,292 unique verb lemmas when derivational prefixes removed**
- Scraped Latin Wiktionary verbs to match lemmas to principal parts
- Manually compared ~100 principal parts to Oxford Latin Dictionary

#### Latin Wiktionary is surprisingly accurate!
### **Conjugations and PPtcs by Type Count**

- Out of the 1000 most frequent verbs
- 1st conjugation is largest and most homogeneous
- 3rd conjugation is second largest and most heterogeneous
- *-itus* and *-tus* are the most common pptcs outside the 1st conjugation

| Conjugation | # Verbs | Top fre | eq  | % Тор | Next r | nost | % Top two |
|-------------|---------|---------|-----|-------|--------|------|-----------|
| 1st         | 533     | -ātus   | 520 | 97.6% | -itus  | 6    | 98.7%     |
| 2nd         | 68      | -itus   | 27  | 39.7% | -tus   | 16   | 63.2%     |
| 3rd         | 226     | -tus    | 58  | 25.7% | -itus  | 11   | 30.5%     |
| 4th         | 55      | -ītus   | 34  | 61.8% | -tus   | 13   | 87.3%     |

# Outline

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

# **Applying the Tolerance Principle**

#### **Over several possible generalizations**

- Theme vowels > pptc forms
- Other present generalizations > pptc forms
- Perfect generalizations > pptc forms
- Present + perfect → pptc form

# **Applying the Tolerance Principle**

#### **Over several possible generalizations**

- Theme vowels > pptc forms
- Other present generalizations → pptc forms
- Perfect generalizations > pptc forms
- Present + perfect → pptc form

#### **Theory independent interpretation**

- Generalizations over surface phonotactics "rightmost vowel is /a:/"
- Or generalizations over morphemes

"ThV is -ā-"

# **Applying the Tolerance Principle**

#### **Over several possible generalizations**

- Theme vowels > pptc forms
- Other present generalizations → pptc forms
- Perfect generalizations > pptc forms
- Present + perfect → pptc form

#### **Theory independent interpretation**

• Generalizations over surface phonotactics "rightmost vowel is /a:/"

"ThV is -ā-"

• Or generalizations over morphemes

#### Modeling early and late learners

- Multiple frequency cutoffs
- Verbal vocab sizes *n* = 100, 500, 1000

41

#### Is - $\bar{a}tus$ the productive pptc derivation for verbs with ThV $\bar{a}$ at n=500?

Is - $\bar{a}tus$  the productive pptc derivation for verbs with ThV  $\bar{a}$  at n=500?

A typical child who knows *n*=500 verbs knows

- *N*=221 *ā* verbs
- e=13 ā verbs with non -ātus pptcs

#### Is - $\bar{a}tus$ the productive pptc derivation for verbs with ThV $\bar{a}$ at n=500?

A typical child who knows *n*=500 verbs knows

- *N*=221 *ā* verbs
- e=13 ā verbs with non -ātus pptcs



**Exceptions are tolerable if** 

#### Is - $\bar{a}tus$ the productive pptc derivation for verbs with ThV $\bar{a}$ at n=500?

A typical child who knows *n*=500 verbs knows

- *N*=221 *ā* verbs
- e=13 ā verbs with non -ātus pptcs
- θ=40.94 tolerance threshold

**Exceptions are tolerable if** 



#### -*ātus* is productive for *ā* verbs at *n*=500

### **Productive Present** $\rightarrow$ **PPtc by Theme Vowel**

| Theme Vowel             | PPtc  | Example             | At <i>n</i> =100? | At 500?               | At 1,000? |
|-------------------------|-------|---------------------|-------------------|-----------------------|-----------|
| ā (1st)                 | -ātus | vocāre ~ vocātus    | YES               | YES                   | YES       |
| ē (2nd)                 | -ĭtus | habēre ~ habitus    | no                | no                    | no        |
| ē (2nd)                 | -tus  | docēre ~ doctus     | no                | no                    | no        |
| e (3rd non <i>-iō</i> ) | -ĭtus | reddere ~ redditus  | no                | no                    | no        |
| e (3rd non <i>-iō</i> ) | -tus  | scribere ~ scriptus | no                | no                    | no        |
| i (3rd - <i>iō</i> )    | -tus  | capiō ~ captus      | YES               | YES                   | YES       |
| e or <i>i</i> (all 3rd) | -ĭtus | II ~ II             | no                | no                    | no        |
| e or <i>i</i> (all 3rd) | -tus  | II ~ II             | no                | no                    | no        |
| ī (4th)                 | -ītus | audīre ~ audītus    | YES               | marginal <sup>*</sup> | no        |
| ī (4th)                 | -tus  | venīre ~ ventus     | YES               | no                    | no        |

Individual Development

#### **Productive Present → PPtc more Narrowly**

| Present                       | PPtc        | Example             | At <i>n</i> =100? | At 500?   | At 1,000? |
|-------------------------------|-------------|---------------------|-------------------|-----------|-----------|
| -[a, o]veō                    | -[au, ō]tus | faveō ~ fautus      | -                 | YES       | YES       |
| -[Velar] <i>eō</i>            | -tus        | doceō ~ doctus      | -                 | no        | no        |
| -[not Velar]eō                | -itus       | debeō ~ debitus     | marginal*         | no        | no        |
| -[not Velar]eō                | -tus        | teneō ~ tentus      | no                | no        | no        |
| -vere                         | -ūtus       | solvere ~ solūtus   | YES               | marginal* | marginal* |
| -[ <i>ll</i> , <i>rr</i> ]ere | -[l,r]sus   | currō ~ cursus      | -                 | marginal* | no        |
| other 3rd                     | -ĭtus       | reddere ~ redditus  | no                | no        | no        |
| other 3rd                     | -tus        | scribere ~ scriptus | no                | no        | no        |

**Individual Development** 

#### **Productive Perfect → PPtc**

| Perfect                 | PPtc  | Example            | At <i>n</i> =100? | At 500? | At 1,000? |
|-------------------------|-------|--------------------|-------------------|---------|-----------|
| -āv-                    | -ātus | amāvī ~ amātus     | YES               | YES     | YES       |
| -īv-                    | -ītus | dormīvī ~ dormītus | YES               | YES     | YES       |
| -ēv-                    | -ētus | flēvī ~ flētus     | YES               | YES     | marginal* |
| -u-                     | -ĭtus | valuī ~ valitus    | no                | no      | no        |
| -u-                     | -tus  | tenuī ~ tentus     | no                | no      | no        |
| -[Velar] <i>u-</i>      | -tus  | līquī ~ līctus     | -                 | no      | no        |
| -[not Velar] <i>u</i> - | -ĭtus | dēbuī ~ dēbitus    | no                | no      | no        |
| -[not Velar] <i>u</i> - | -tus  | peruī ~ pertus     | no                | no      | no        |
| -S-                     | -tus  | scripsī ~ scriptus | no                | no      | no        |
| -Cs-                    | -tus  | iūnxī ~ iūnctus    | YES               | YES     | YES       |
| bare or stem change     | -ĭtus | lēgī ~ lēctus      | no                | no      | no        |

**Individual Development** 

#### **Productive Perfect + Present → PPtc**

| Perfect                | PPtc  | Example                   | At <i>n</i> =100? | At 500? | At 1,000? |
|------------------------|-------|---------------------------|-------------------|---------|-----------|
| -vere + -u-            | -ūtus | volvere ~ voluī ~ volūtus | YES               | YES     | YES       |
| Individual Development |       |                           |                   |         |           |

- Only makes a difference for one class, *-ūtus*
- Only an option when a learner happens to know both stems

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (*-ātus*), 3rd-*iō* (*-tus*)
- Marginal for *faveo*-type (*-autus/-otus*) and *solvo*-type (*-utus*)

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-*ātus*), 3rd-*iō* (-*tus*)
- Marginal for *faveo*-type (*-autus/-otus*) and *solvo*-type (*-utus*)
- No productive pptc derivation for 2nd, 3rd-*ō*, 4th
- No broadly productive -*itus* or -tus

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-*ātus*), 3rd-*iō* (-*tus*)
- Marginal for *faveo*-type (*-autus/-otus*) and *solvo*-type (*-utus*)
- No productive pptc derivation for 2nd, 3rd-*ō*, 4th
- No broadly productive -*itus* or -tus

#### If derivations is possible from the perfect,

- The above + productive deriv for -*īvī* (most of 4th; -*ītus*), -*ēvī* (-*ētus*), -*Csī* (-*tus*)
- Solidly productive -*ūtus* for solvō-types

#### If derivations are only possible from the present,

- Productive pptc derivation for 1st (-*ātus*), 3rd-*iō* (-*tus*)
- Marginal for *faveo*-type (*-autus/-otus*) and *solvo*-type (*-utus*)
- No productive pptc derivation for 2nd, 3rd-*ō*, 4th
- No broadly productive -*itus* or -tus

#### If derivations is possible from the perfect,

- The above + productive deriv for -*īvī* (most of 4th; -*ītus*), -*ēvī* (-*ētus*), -*Csī* (-*tus*)
- Solidly productive -*ūtus* for *solvō*-types
- No broadly productive pptc derivation for *-uī*-perfect verbs
- Still no broadly productive -*itus* or -tus

# Outline

- The Classical Latin Past Participles
- Acquiring Morphological Generalizations
- Language Acquisition in the Past
- Predictability of the Past Participles
- Synchronic and Diachronic Implications

### **The System from Latin to Proto-Romance**

#### Varied across the Latin-speaking world, but in general...

- Novel verbs tended to have regular pptcs<sup>1</sup>
- "Regular" \*-*atu*, \*-*itu*, \*-*utu* < -*ātus*, -*ītus* (not -*ĭtus*), -*ūtus* expanded at the expense of -*itus*, -*tus*, and others<sup>2</sup>
- The rise of \*-*utu* is mysterious given that it is rare in CL
- Perfects ( $\Rightarrow$  preterites) were often regularized, often in \*-*ui* < -*uī*<sup>3</sup>

# **Diachronic Implications**

#### **Developments in Late Latin**

- Three productive LL pptcs: \*-*atu* < -*ātus*, \*-*itu* < -*ītus*, \*-*utu* < -*ūtus*
- *-itus* and *-tus* were unproductive in CL and reduced to irregulars
- -ūtus was productive for a small class
- But the only productive option for *-uī* perfects!
- It spread first among *-uī* perfects
- No competition, "a big fish in a small pond"

# Implications

#### **Listing and Rules**

- An externally motivated model guides theoretical analysis
- Predicts much more listing than a linguist relying on intuitions might

# Implications

#### **Listing and Rules**

- An externally motivated model guides theoretical analysis
- Predicts much more listing than a linguist relying on intuitions might

#### The relationship between stems

- If pptcs are derived from perfects
  - More can be derived by rule
  - Accounts for diachronic leveling of the perfect and pptc
- To do so, either perfect stems exist as representational objects or multiple step root → perfect "stem" → pptc derivations are required

# End.

### With support from





# **Thank you**

- Charles Yang
- Mitch Marcus
- Don Ringe
- Rolf Noyer
- Rebecca Starr Lurie
- Mitcho Erlewine

## **Reflexes of** *-ūtus* and *-ĭtus* in Attested Romance<sup>1</sup>

- Reflexives of -*ūtus* constitute the default for at least some class in most Romance languages
  - They are present but apparently non-productive in Surselvan (Rhaeto-Romance; Switzerland)
- Reflexes are attested in Old Spanish and Portuguese but have been lost
  - Their only reflexes are in adjectives eg, *agudo*, *menudo*



## **Reflexes of** *-ūtus* and *-ĭtus* in Attested Romance<sup>1</sup>

- Reflexives of -*ūtus* constitute the default for at least some class in most Romance languages
  - They are present but apparently non-productive in Surselvan (Rhaeto-Romance; Switzerland)
- Reflexes are attested in Old Spanish and Portuguese but have been lost
  - Their only reflexes are in adjectives eg, *agudo*, *menudo*
- -*itus* remains productive in Apulian and Sardinian
  - /i/ merged with /i:/ in
    Sardinian, causing -*ĭtus* to fall together with -*ītus*



#### How are past particples derived?

- Are regular pptcs influenced by the present or perfect, or all memorized?
- Diachronic evidence for both

| present → pptc: | nasal infix spread |
|-----------------|--------------------|
| perfect → pptc: | perfect analogies  |

#### **The Nasal Infix**

- Inherited from PIE, inserted into present stems
- Some continue to work like this in Latin<sup>1</sup>
- But some have analogized to the perfect and pptc

| Туре       | Present              | Perfect              | PPtc                   |
|------------|----------------------|----------------------|------------------------|
| Inherited  | fu <mark>n</mark> dō | fūdī                 | fūsus                  |
| Pres, Perf | fingō                | fī <mark>n</mark> xī | fictus <sup>2</sup>    |
| All        | iungō                | iu <mark>n</mark> xī | iū <mark>n</mark> ctus |
| Pres, PPtc | pungō                | pupugī               | pū <b>n</b> ctus       |

#### **The Nasal Infix**

- Inherited from PIE, inserted into present stems
- Some continue to work like this in Latin<sup>1</sup>
- But some have analogized to the perfect and pptc
- Only evidence for present → pptc derivation if absent in the perfect
  - At most two examples of this...
  - Otherwise, can present > perfect > pptc

| Туре       | Present              | Perfect              | PPtc                |
|------------|----------------------|----------------------|---------------------|
| Inherited  | fu <mark>n</mark> dō | fūdī                 | fūsus               |
| Pres, Perf | fingō                | fīnxī                | fictus <sup>2</sup> |
| All        | iu <mark>n</mark> gō | iu <mark>n</mark> xī | iūnctus             |
| Droc DDtc  | pungō                | pupugī               | pūnctus             |
| Pres, PPtc | tundō                | tutudī               | tū(n)sus            |

### **Perfect Analogies**

- Some pptcs have clearly been reworked on the basis of the perfect<sup>1</sup>
  - cernōcrēvīcrētus(expected certus retained as adj)sternōstrāvīstrātus
  - ? sonāre sonuī sonitus
- Continues into Late Latin: eg \*-*utu* pptcs typically correspond to \*-*ui* perfects

#### **The System from Proto-Romance to Romance**

#### Spanish, for example, shows the most regularization<sup>1</sup>

- Regularization continued
  - -ado, -ido, and -udo existed in Old Spanish
  - Only -ado, -ido remain productive
- A handful of irregular pptcs remain, many relegated to adjectival meaning
  - *hecho, puesto, suelto, visto, vuelto, etc, not all inherited*
  - *teñir~teñido* 'dyed' but adj *tinto* 'dyed red' < *tinctus*, etc
  - OS had more eg querer~quisto, prender~preso < prehensus

#### **Past Participle Gaps and Meanings**

- Past participles are typically passive
- But not all verbs have past participles<sup>1</sup>
  - Sometimes due to semantics (eg, statives have no pptcs)
  - Sometimes they're more properly paradigmatic gaps

eg bibō, but pōtus not \*bibitus, feriō, but percussus not \*ferītus

- Some pptcs are active rather than passive<sup>2</sup>
  - Expected for deponents
  - But applies to some non-deponents as well

#### eg locūtus (deponent) 'having spoken,' iūrātus 'having sworn'

### **Cross-Language Lexical Comparisons**

- Compared lexical composition of modern CDS and historical corpora
- Calculated number of verb types across corpora with similar meanings

For corpus-derived lexicons A and B where A and B are unordered sets, similarity =  $|A \cap B| / min(|A|, |B|)$ 

#### **Cross-Language Corpora**

- English CDS verb lemmas in CHILDES Brown (and Brent for comparison)
- Spanish CDS verb lemmas in combined CHILDES FernAguado, Hess, OreaPine, Remedi, Romero, SerraSole
- Classical Latin verb lemmas in all Perseus online 3rd BC 2nd AD (inclusive)

| Corpus            | Freq Cutoff | Lexicon size ( <i>n</i> ) |
|-------------------|-------------|---------------------------|
| English CDS Brown | < 17        | 260                       |
| English CDS Brent | < 17        | 257                       |
| Spanish CDS       | <11         | 263                       |
| Latin             | < 666       | 260                       |

#### **Cross-Language Comparisons**

- Baselines: English-English (within-language) English-Spanish (cross-language)
- English-English unsurprisingly has the highest overlap
- Latin comparisons fall in between English-Spanish and English-English

### Latin Perseus contains the same kind of high frequency verbs that CDS does

| Comparison         | % Overlap |
|--------------------|-----------|
| English - EN Brent | 81.71%    |
| English - Spanish  | 73.07%    |
| English - Latin    | 75.77%    |
| Spanish - Latin    | 78.62%    |

### **Paradigm Saturation**

- Paradigm Saturation<sup>1</sup> the proportion of a verb's possible inflected forms which are actually attested in a corpus
- A measure of data sparsity
- Mean saturations tend to be low
- Obeys Zipfian distribution

### **Paradigm Saturation Data**

- All POS-tagged, lemmatized, morpho feature annotated
- CDS English (Brown), Spanish
- and German (CDS Leo<sup>1</sup>)
- Modern UD<sup>2</sup> English, Finnish, German, Spanish, Turkish
- Historical UD Gothic, Latin
- Order 10<sup>5</sup> verb tokens

| Corpus   | Lang    | # V Tokens | # V Types | Ratio  |
|----------|---------|------------|-----------|--------|
| CDS      | English | 94,768     | 916       | 103.46 |
| CDS      | Spanish | 96,686     | 879       | 110.00 |
| CDS      | German  | 81,351     | 641       | 126.91 |
| Modern   | English | 53,796     | 3,225     | 16.67  |
| Modern   | Spanish | 85,861     | 5,019     | 17.11  |
| Modern   | German  | 21,835     | 2,826     | 7.73   |
| Modern   | Finnish | 63,891     | 3,476     | 18.38  |
| Modern   | Turkish | 12,064     | 968       | 12.46  |
| Historic | Gothic  | 12,749     | 1,172     | 10.88  |
| Historic | Latin   | 99,066     | 2,2833    | 34.97  |
## **Paradigm Saturation Data**

- All POS-tagged, lemmatized, morpho feature annotated
- CDS English (Brown), Spanish
- and German (CDS Leo<sup>1</sup>)
- Modern UD<sup>2</sup> English, Finnish, German, Spanish, Turkish
- Historical UD Gothic, Latin
- Order 10<sup>5</sup> verb tokens
- CDS token/type ratios are on the order of 10x higher

| Corpus   | Lang    | # V Tokens | # V Types | Ratio  |
|----------|---------|------------|-----------|--------|
| CDS      | English | 94,768     | 916       | 103.46 |
| CDS      | Spanish | 96,686     | 879       | 110.00 |
| CDS      | German  | 81,351     | 641       | 126.91 |
| Modern   | English | 53,796     | 3,225     | 16.67  |
| Modern   | Spanish | 85,861     | 5,019     | 17.11  |
| Modern   | German  | 21,835     | 2,826     | 7.73   |
| Modern   | Finnish | 63,891     | 3,476     | 18.38  |
| Modern   | Turkish | 12,064     | 968       | 12.46  |
| Historic | Gothic  | 12,749     | 1,172     | 10.88  |
| Historic | Latin   | 99,066     | 2,2833    | 34.97  |

## **Paradigm Saturations**

- CDS saturations only slightly higher than modern equivs
- Despite difference in token/type ratios
- Historical corpora similar to modern ones
- Saturation appears related to paradigm size if anything

| Corpus   | Lang    | Paradigm | Max Sat. | Mean Sat.     | Med Sat. |
|----------|---------|----------|----------|---------------|----------|
| CDS      | English | 5        | 100%     | 43.23%        | 40.00%   |
| CDS      | Spanish | 29       | 44.83%   | 7.59%         | 6.90%    |
| CDS      | German  | 67       | 52.24%   | 8.31%         | 4.48%    |
| Modern   | English | 5        | 100%     | 42.80%        | 40.00%   |
| Modern   | Spanish | 67       | 43.28%   | <b>4.91</b> % | 1.49%    |
| Modern   | German  | 29       | 51.72%   | 5.83%         | 3.45%    |
| Modern   | Finnish | 150      | 27.33%   | 2.46%         | 1.33%    |
| Modern   | Turkish | 120      | 99.17%   | 4.83%         | 1.67%    |
| Historic | Gothic  | 52       | 53.85%   | 6.31%         | 3.85%    |
| Historic | Latin   | 113      | 81.42%   | 5.90%         | 2.65%    |

#### CDS and UD distributions correspond by language

## **Zipfian Distributions**



# **Zipfian Distributions**

#### Historical distributions look like modern ones



## Language Change by Language Acquisition

- First language acquisition is one of the primary drivers of language change<sup>1</sup>
- Plays a role in both innovation and propagation

#### The general idea

- Minor "errors" in acquisition accrue over successive generations
- This eventually yields population-level change, which may be dramatic

## Language Change by Language Acquisition

- First language acquisition is one of the primary drivers of language change<sup>1</sup>
- Plays a role in both innovation and propagation

#### The general idea

- Minor "errors" in acquisition accrue over successive generations
- This eventually yields population-level change, which may be dramatic

#### But aren't children really good at this?

## The Paradox of Language Change<sup>1</sup>

• As I see it, a central problem in the study of language change

## The Paradox of Language Change<sup>1</sup>

• As I see it, a central problem in the study of language change

## If children are so good at acquiring language, why are they so bad at it?

## **Change from the Learners' Perspective**

I develop a model of language change which provides a direct causal role for the normal process of language acquisition

- To understand how and when acquisition drives change
- To provide a complementary line of evidence for understanding acquisition
- To delimit the explanatory roles of acquisition, change, and representation

## **Change from the Learners' Perspective**

I develop a model of language change which provides a direct causal role for the normal process of language acquisition

- To understand how and when acquisition drives change
- To provide a complementary line of evidence for understanding acquisition
- To delimit the explanatory roles of acquisition, change, and representation

#### A focus on the actuation of changes<sup>1</sup> (innovation and initial propagation)<sup>2</sup>

## Transmission is not strictly linear and generational

- Children mature in communities and receive input from multiple speakers
- Community input formally necessary for attested dynamics of change<sup>1</sup>
- Young children learn sociolinguistic variables<sup>2</sup>
- Children attend to input from older children<sup>3</sup> who are not linguistically mature
- Multiple competing targets may be present in the input
  - May or may not be subject to social valuation
  - Speakers/learners may or may not be consciously aware

## Some learning targets are unclear or absent

- One cannot acquire language from input alone due to Poverty of the Stimulus
- Nevertheless, input plays a critical role<sup>1</sup>
- UG renders acquisition tractable, not trivial

## Some learning targets are unclear or absent

- One cannot acquire language from input alone due to Poverty of the Stimulus
- Nevertheless, input plays a critical role<sup>1</sup>
- UG renders acquisition tractable, not trivial

#### **Abject Poverty**

- Populations may not converge on a single grammar
  - Syntax Interaction of Korean V-raising and negation<sup>1</sup>
  - Morphology (non)decomposition of English 'semi-weak' verbs<sup>2</sup>
  - **Phonetics** articulation of English /r/<sup>3</sup>
- Parts of the grammar may go unspecified paradigmatic gaps<sup>4</sup>

#### **Learner Innovation** ≠ **Learner Error**

Innovations need not be due to "errors"

## **Learner Innovation** ≠ **Learner Error**

Innovations need not be due to "errors"

#### **Errors - "Blame the Child"**

- The learner does not act correctly on its input "a buggy algorithm"
- → errors presuppose appropriate evidence and an available target

## **Learner Innovation** ≠ **Learner Error**

Innovations need not be due to "errors"

#### **Errors - "Blame the Child"**

- The learner does not act correctly on its input "a buggy algorithm"
- → errors presuppose appropriate evidence and an available target

#### Non-errors - "Blame the Environment"

- The learner acts correctly but is dealt a bad input sample
- Even for a good algorithm, "garbage in, garbage out"
- Change in the face of severely underspecified input or even trivial variation

## How do we get from innovation to actuation?

• Need a way to get from individual innovation to population-level actuation

#### Solution to the Paradox of Language Change

- Acquisition is hard!
- Learning targets are obscured by
  - Abject poverty in the input
  - Interpersonal variation
- So even a "perfect" learner can initiate change

## How do we get from innovation to actuation?

• Need a way to get from individual innovation to population-level actuation

#### Solution to the Paradox of Language Change

- Acquisition is hard!
- Learning targets are obscured by
  - Abject poverty in the input
  - Interpersonal variation
- So even a "perfect" learner can initiate change

#### A thought experiment: "Sibling-Induced Change"

# "Sibling-Induced" Change

#### Imagine two young children, Alice is slightly older than Bob

- Alice is currently producing innovative forms
  - Child errors are well-attested across domains
  - Bob may hear these forms
- Bob is receiving both conservative adult input and Alice's
- How does this effect Bob?

## "Sibling-Induced" Change

#### **Can Bob identify Alice's innovation?**

- Bob may rarely if ever hear a conservative token corresponding Alice's
  - Particularly in morphology and syntax
  - Phonology is less impoverished
- Since Alice is mostly consistent with adults, he cannot tell if she is innovating

## "Sibling-Induced" Change

#### **Can Bob identify Alice's innovation?**

- Bob may rarely if ever hear a conservative token corresponding Alice's
  - Particularly in morphology and syntax
  - Phonology is less impoverished
- Since Alice is mostly consistent with adults, he cannot tell if she is innovating

#### Will Bob adopt Alice's innovation?

- In cases of severe sparsity, yes (what choice does he have?)
- In other cases,
  - Even young children orient toward peers<sup>1</sup>
  - Bob may prefer Alice's forms over his parents and may regularize towards Alice's<sup>2</sup>
  - He may later learn adult forms as sociolinguistic variant doublets

<sup>1</sup> Manly 1930, Weinreich, Labov & Herzog 1968 p 145, Roberts and Labov 1995, Labov 2001 p449, Nardy, Chevrot & Barbu 2014 <sup>2</sup> Singleton & Newport 2004, Hudson Kam & Newport 2005, Sneller et al in prep, Schuler et al 2017, Newport 2019

## Z-Model of Language Acquisition and Change<sup>1</sup>

- A cycle of error-prone abductive and inductive learning
- Outputs from one grammar becomes evidence for the next one
- Cycle continues indefinitely





- Individual Production
  - Variation across social settings
  - Variation over lifetimes



- Individual Production
  - Variation across social settings
  - Variation over lifetimes
- Community Membership
  - Variation across people
  - Everyone receives many inputs



- Individual Production
  - Variation across social settings
  - Variation over lifetimes
- Community Membership
  - Variation across people
  - Everyone receives many inputs
- Gradual Maturation
  - Acquisition takes time
  - Immature learners influence others



- Individual Production
  - Variation across social settings
  - Variation over lifetimes
- Community Membership
  - $\circ$  Variation across people
  - Everyone receives many inputs
- Gradual Maturation
  - Acquisition takes time
  - Immature learners influence others



More of a "Cyclic multi-multi-Z" model

## What it all comes down to

- Individual Production
  - Variation across social settings
  - Variation over lifetimes
- Community Membership
  - $\circ$  Variation across people
  - Everyone receives many inputs
- Gradual Maturation
  - Acquisition takes time
  - Immature learners influence others

# The "Sibling-Induced" model for acquisition-driven change

