SIGMORPHON-UniMorph 2022 Shared Task 0: Typologically Diverse and Acquisition-Inspired Morphological Inflection Generation Jordan Kodner, Salam Khalifa et xxviii al.

https://aclanthology.org/2022.sigmorphon-1.18/ https://aclanthology.org/2022.sigmorphon-1.19/

SIGMORPHON 2022
Seattle, July 14, 2022

Two Subtasks

Generalization and

Typologically Diverse
Morphological Inflection

- 33 languages from 10 families
- Large and small training sets
- Iteration on the "classic" inflection task
- Focused on two dimensions of generalizations:

1) Over Iemmas
2) Over feature sets

Modeling Inflection

in Language Acquisition

- How do learning trajectories for automatic systems compare to children's learning trajectories?
- Three classic languages/patterns

1) English past tense
2) German noun plurals
3) Arabic noun plurals

Subtask 1: Languages

Afro-Asiatic
Semitic
Arabic
Hebrew

Uralic
 Ugric Finnic
 Hungarian Karelian
 Ludian
 Veps

Turkic

Kipchak Oghuz
Kazakh Turkish


```
Yeniseian
Ket
```


Indo-European

Armenian
 Germanic

E. Armenian

Old English
Old Norse
Indic
Assamese
Braj Gujarati
Kholosi
Magahi

Gothic
Low German
Middle Low German
Old High German
Slavic
Polish
Pomak
Slovak
Upper Sorbian

Subtask 1: Four types of test (lemma, features) pairs

Sample training

```
eat eating V;V.PTCP;PRS
run ran V;PST
```


Sample test

eat	$V ; P S T$	(both)
run	$V ;$ NFIN	(lemma)
see	V;PST	(features)
go	V;PRS;3;SG	(neither)

Both lemma and feature set attested in training (not together)

Lemma
Features
Neither
only lemma in training
only feature set in training
neither lemma nor feature set in training

Subtask 1: Four types of test (lemma, features) pairs

Sample training

| eat eating | $\mathrm{V} ; \mathrm{V} . \mathrm{PTCP} ; \mathrm{PRS}$ |
| :--- | :--- | :--- |
| run ran | $\mathrm{V} ; \mathrm{PST}$ |

Sample test

eat	$V ; P S T$	(both)
run	V;NFIN	(lemma)
see	V;PST	(features)
go	V;PRS;3;SG	(neither)

Both lemma and feature set attested in training (not together)

Lemma
Features
Neither
only lemma in training
only feature set in training
neither lemma nor feature set in training

Not controlled for in previous iterations

Subtask 1: Systems

CLUZH

 Flexica*OSU
TüMorph-FST
TüMorph-Main
UBC*
NeurBase
NonNeurBase

Clematide, Wehrli, \& Makarov
Scherbakov \& Vylomova
Elsner \& Court
Merzhevich, Gbadegoye, Girrbach, Li, \& Shim
" " " " \& "
Yang, Yang, Nicolai, \& Silfverberg
same as 2021
same as 2021

[^0]
Subtask 1: Systems

CLUZH

 Flexica*OSU
TüMorph-FST
TüMorph-Main
UBC*
NeurBase
NonNeurBase

Clematide, Wehrli, \& Makarov
Scherbakov \& Vylomova
Elsner \& Court
Merzhevich, Gbadegoye, Girrbach, Li, \& Shim
" " " "\& "
Yang, Yang, Nicolai, \& Silfverberg
same as 2021
same as 2021 Baselines

[^1]
Subtask 1: Systems

CLUZH Flexica*

OSU
TüMorph-FST
TüMorph-Main
UBC*
NeurBase
NonNeurBase

Clematide, Wehrli, \& Makarov
Scherbakov \& Vylomova
Elsner \& Court
Merzhevich, Gbadegoye, Girrbach, Li, \& Shim
" " " "\& "
Yang, Yang, Nicolai, \& Silfverberg
same as 2021
same as 2021

Subtask 1: Summary Results

Small Training Condition						Large Training Condition				
System	Overall	Both	Lemma	Feats	Neither	Overall	Both	Lemma	Feats	Neither
CLUZH	56.871	77.308	31.269	77.966	43.255	67.853	90.991	41.425	87.171	60.300
Flexica	34.406	59.503	6.390	61.616	14.562	38.243	66.846	4.985	73.007	21.337
OSU	47.688*	79.310*	8.565*	82.308*	44.133*	46.734	89.565	4.843	85.308	16.768
TüM-FST	67.308*	100.00*	55.319*	75.000*	72.115*	-	-	-	-	-
TüM-Main	41.591*	58.907*	18.597*	62.469*	27.613*	57.627	77.995	34.916	76.009	48.720
UBC	57.234	75.963	35.519	74.201	46.060	71.259	89.503	50.583	85.063	66.224
NeurBase	47.626	65.027	24.929	66.539	35.601	62.391	80.462	42.166	77.627	55.563
NonNeur	33.321	58.475	5.566	59.969	14.431	37.583	67.434	4.843	72.283	16.768

All systems perform much better when test item feature sets are seen than when they are novel

Subtask 1: Summary Results

True even for agglutinative languages

Small Training Condition						Large Training Condition				
System	Overall	Both $>$	Lemma	Feats	Neither	Overall	Both	Lemma	Feats	Neither
CLUZH	56.871	77.308	31.269	77.966	43.255	67.853	90.991	41.425	87.171	60.300
Flexica	34.406	59.503	6.390	61.616	14.562	38.243	66.846	4.985	73.007	21.337
OSU	47.688*	79.310*	8.565*	82.308*	44.133*	46.734	89.565	4.843	85.308	16.768
TüM-FST	67.308*	100.00*	55.319*	75.000*	72.115*	-	-	-	-	-
TüM-Main	41.591*	58.907*	18.597*	62.469*	27.613*	57.627	77.995	34.916	76.009	48.720
UBC	57.234	75.963	35.519	74.201	46.060	71.259	89.503	50.583	85.063	66.224
NeurBase	47.626	65.027	24.929	66.539	35.601	62.391	80.462	42.166	77.627	55.563
NonNeur	33.321	58.475	5.566	59.969	14.431	37.583	67.434	4.843	72.283	16.768

Different strengths?
CLUZH outperforms when feat sets are seen

Subtask 1: Summary Results

Small Training Condition						Large Training Condition				
System	Overall	Both >	Lemma	Feats	Neither	Overall	Both	Lemma	Feats	Neither
CLUZH	56.871	77.308	31.269	77.966	43.255	67.853	90.991	41.425	87.171	60.300
Flexica	34.406	59.503	6.390	61.616	14.562	38.243	66.846	4.985	73.007	21.337
OSU	47.688*	79.310*	8.565*	82.308*	44.133*	46.734	89.565	4.843	85.308	16.768
TüM-FST	67.308*	100.00*	55.319*	75.000*	72.115*	-	-	-	-	-
TüM-Main	41.591*	58.907*	18.597*	62.469*	27.613*	57.627	77.995	34.916	76.009	48.720
UBC	57.234	75.963	35.519	74.201	46.060	71.259	89.503	50.583	85.063	66.224
NeurBase	47.626	65.027	24.929	66.539	35.601	62.391	80.462	42.166	77.627	55.563
NonNeur	33.321	58.475	5.566	59.969	14.431	37.583	67.434	4.843	72.283	16.768

Subtask 1: Seen vs Unseen on Agglutinative Langs

- Exponence of a feature set is (at least largely) predictable from individual features
\rightarrow Generalization should be possible "Could an undergrad do it?"
- Chukchi, Evenki, Georgian, Hungarian, Itelmen, Karelian, Kazakh, Ket, Korean, Ludic, Mongolian, Turkish, Veps, and Xibe

Features	Small		Large	
System	Seen	Novel	Seen	Novel
CLUZH	78.837	34.118	90.198	40.657
Flexica	60.885	11.386	69.173	10.094
OSU	77.800^{\star}	30.376^{\star}	88.497	13.456
TüM-FST	100.00^{\star}	17.778^{\star}	-	-
TüM-Main	61.730^{\star}	14.816^{\star}	74.667	29.433
UBC	75.994	39.232	89.213	49.799

*OSU, TüMorph-FST, and TüMorph-Main were only run on some languages in small (italicized)

Subtask 1: Conclusions

- Systems consistently generalize to new lemmas better than to unseen feature sets, even when generalization to unseen feature sets should be feasible
- Systems vary in their relative ability to perform each generalization
\rightarrow Reported performance (and rankings) are sensitive to these
overlaps in data splits
\rightarrow Gains are yet to be had for languages with large paradigms

Subtask 2: Human-like?

To what extent do systems show learning trajectories similar to children on child-like input?

- Data was extracted from child-directed corpora within CHILDES when possible
- Small training sets of high frequency items were provided in line with computational literature on language acquisition
- Three heavily studied morphological patterns were chosen

Subtask 2: Morphological Patterns

Three well-studied patterns in the (computational-)acquisition literature

English Past Tense

- Default -ed
overwhelming majority
- Plenty of high freq
irregular verbs
sing-sang
sting-stung
go-went...

German Noun Plurals

- Several regular patterns
- Phonological and gender conditioning
- "Minority default" -s "Pattern of last resort"
- Frequency-matching won't work well

Arabic Noun Plurals

- Two types

1) Suffixed "sound" plurals Masc -ūn, Fem -āt
2) Stem changing "broken" pl

Dozens of patterns

Subtask 2: Systems

CLUZH
HeiMorph
OSU
NeurBase
NonNeurBase

Clematide, Wehrli, \& Makarov
Ramarao, Zinova, Tang \& van de Vijver
Elsner \& Court
same as 2021
same as 2021

Subtask 2: Systems

CLUZH
HeiMorph
OSU
NeurBase
NonNeurBase

Clematide, Wehrli, \& Makarov
Ramarao, Zinova, Tang \& van de Vijver
Elsner \& Court
same as 2021
same as 2021

Same system as Subtask 1

Subtask 2: Summary Results

at $\mathrm{N}=1000$			at $\mathrm{N}=600$				at $\mathrm{N}=1000$		
System	English	Ortho	German	Suffix	Umlaut	Arabic	SfSmB		
CLUZH	88.67	91.17	80.17	89.00	90.67	65.83	75.50		
HeiMorph	77.33	82.0	73.33	85.83	88.83	59.33	71.00		
OSU	88.67	90.67	75.00	85.67	90.17	65.33	76.00		

Subtask 2: Summary Results

Subtask 2: Summary Results

Subtask 2: English -ing Verbs

In natural child speech, over-reguarlization errors ($\rightarrow-e d$) are overwhelmingly more common than over-irregularization errors (analogy with irregulars)

What do systems do with the large-ish class of verbs ending in -ing?

```
In the training set
swing-swung
sing-sang
thing-thinged
ding-dinged
sling-slung
cling-clung
```


Subtask 2: English -ing Verbs

In natural child speech, over-reguarlization errors ($\rightarrow-e d$) are overwhelmingly more common than over-irregularization errors (analogy with irregulars)

What do systems do with the large-ish class of verbs ending in -ing?

System	-ed	-ang	-ung	Other
(Gold)	2	2	3	1
CLUZH				
HeiMorph				
OSU				

Subtask 2: English -ing Verbs

In natural child speech, over-reguarlization errors ($\rightarrow-e d$) are overwhelmingly more common than over-irregularization errors (analogy with irregulars)

What do systems do with the large-ish class of verbs ending in -ing?

System	-ed	-ang	-ung	Other
(Gold)	2	2	3	1
CLUZH	4	1	3	0
HeiMorph	8	0	0	0
OSU	8	0	0	0

Over-regularization dominates, but CLUZH also over-irregularizes

The situation is not as rosy for German or Arabic. See the paper

Subtask 2: Conclusions

- Performance is generally good in quantitative terms, but there is room for improvement
- Errors are not particularly human-like but share some commonalities

Now, the system presentations

And Additional Thanks: Jeff Heinz, Charles Yang, Ellen Broselow, Garrett Nicolai, Maria Ryskina, Ben Ambridge

[^0]: *Submitted after deadline

[^1]: *Submitted after deadline

